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Chiral Quantum Optics in the Bulk of Photonic Quantum Hall Systems
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We study light-matter interactions in the bulk of a two-dimensional photonic lattice system, where
photons are subject to the combined effect of a synthetic magnetic field and an orthogonal synthetic electric
field. In this configuration, chiral waveguide modes appear in the bulk region of the lattice, in direct
analogy to transverse Hall currents in electronic systems. By evaluating the non-Markovian dynamics of
emitters that are coupled to those modes, we identify critical coupling conditions, under which the shape
of the spontaneously emitted photons becomes almost fully symmetric. Combined with a directional,
dispersionless propagation, this property enables a complete reabsorption of the photon by another distant
emitter, without relying on any time-dependent control. We show that this mechanism can be generalized
to arbitrary in-plane synthetic potentials, thereby enabling flexible realizations of reconfigurable networks
of quantum emitters with arbitrary chiral connectivity.
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I. INTRODUCTION

The challenge of building fully operative quantum
devices such as quantum computers, quantum simula-
tors, and quantum cryptography systems has stimulated
an unprecedented flow of ideas for the implementation of
technologies based on the principles of quantum mechan-
ics [1]. In this effort, many disruptive ideas came by
combining concepts from different areas of quantum sci-
ences [2]. Theories and concepts that were originally
developed to explain fundamental physical phenomena
are now re-elaborated in a new technological perspective.
This process not only serves to inspire the realization of
new devices, but also provides new insights on existing
knowledge and contributes to building a more complete
understanding of the microscopic world.

This is the case, for instance, for the quantum Hall
effect. This effect was first discovered in electronic mate-
rials more than 40 years ago [3] and sparked the devel-
opment of the theory of topological materials [4] and

*daniele.debernardis@ino.cnr.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

the proposal of novel schemes for topologically protected
quantum computing [5]. These concepts are now being
re-elaborated in the context of photonic systems, giving
rise to the field of topological photonics [6]. Here, ideas
and phenomena of the integer and fractional quantum
Hall effect are implemented and generalized to various
synthetic photonic, phononic, atomic, or even molecular
platforms [7–17], with unprecedented freedom in tuning
the physical parameters and measuring observables, which
were previously inaccessible in traditional solid-state
systems.

These developments in fundamental science have nat-
urally opened the way to technological applications, for
instance, to exploit the topologically protected chiral edge
modes to create new integrated solutions for a unidi-
rectional transport of information, robust against system
imperfections [18,19]. The potential of these new devices
became particularly evident in the framework of the field
of chiral quantum optics [20]: here, the use of topological
chiral channels for the propagation of photons combined
with nonlinear quantum emitters, such as atoms or quan-
tum dots, opens the way toward the creation of a full cas-
caded quantum network [21,22], which is a central piece
in the development of quantum information technologies
[23].

This sparked a new era for topological photonics experi-
ments, with the objective of creating hybrid qubit-photonic
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lattice platforms in different spectral regions, from the
GHz up to the optical range. In these systems, topological
features are exploited to realize complete chiral quantum
optical setups, coupling their topological chiral edge chan-
nels to localized quantum emitters (or qubits) [24–26]. In
parallel to such intense experimental efforts, new innova-
tive theoretical proposals are constantly made to exploit
these devices for new technological applications [27–40].

In this paper, we study the light-matter interaction
dynamics of two-level quantum emitters coupled to a 2D
photonic lattice subject to an homogeneous perpendicu-
lar synthetic magnetic field and an in-plane homogeneous
synthetic electric field. Differently from the existing chi-
ral quantum optics literature [7,21,22,30,32,34,36], which
mostly focuses on light propagating along edge modes,
here we investigate new strategies based on light propa-
gation through the bulk of a 2D photonic system via the
photonic analog of the Hall current. In the last decade,
related anomalous transport and Berry curvature effects in
the bulk of photonic systems have been the subject of sev-
eral theoretical [41–43] and experimental [44–46] works,
but have never been proposed as the operating principle of
photonic devices.

Specifically, we show here how the combined effect
of crossed synthetic electric and magnetic field produces
effective 1D waveguides based on the Hall effect, which
allow light to unidirectionally propagate through the bulk
of the lattice, similar to Hall currents. The highly in-
homogeneous local density of photonic states of these
waveguides makes the emission dynamics of two-level
quantum emitters strongly non-Markovian. This intrinsic
non-Markovianity is a unique feature of this system and
completely modifies the nature of the most basic light-
matter interaction processes such as spontaneous emis-
sion and absorption. The photon generated by this exotic
non-Markovian spontaneous emission process naturally
propagates along a single direction with a highly sym-
metric wavepacket shape, very different from the usual
highly asymmetric wavepacket of standard Markovian
emission. As a direct consequence of this symmetric shape,
an efficient chiral state transfer between distant emitters
located in the bulk of the lattice is possible without the
need for fine-tuned time-dependent control pulses [23,47].
As another surprising consequence of the non-Markovian
light-matter interactions, this system supports atom-photon
bound states in the chiral continuum [48,49], which are
typically absent in the usual chiral quantum optics config-
urations.

In view of the high tunability of topological photonic
structures, these new physical effects naturally call for
technological applications and pave the way towards cas-
caded quantum networks with an improved performance
compared to conventional setups. On top of this, our
proposed approach makes full use of the whole bulk
of the photonic lattice and thereby drastically increases

the number of emitters that can be interfaced in a
directional manner. Thanks to the topological origin of the
underlying mechanism, our proposed transfer method is
also highly robust with respect to imperfections and can
be readily generalized to non-uniform electric field pro-
files leading to arbitrary curvilinear chiral 1D waveg-
uides. This is of utmost interest in view of real-
izing reconfigurable cascaded networks with arbitrary
connectivity.

From a fundamental science perspective, such a net-
work could also be seen as a quantum simulator of the
percolation theory of the quantum Hall effect and its ran-
dom network representation [50,51], a point of view that
is closely connected to the properties of quantum Hall
extended states [52–54]. Through our findings, this physics
can be now simulated with a full freedom in the choice
of parameters and geometry. In addition, introducing non-
linear emitters will provide effective interaction between
photons, which may open to studies of the propagation
dynamics of fractional quantum Hall edge excitations in
a novel context.

The paper is structured as follows. In Sec. II we intro-
duce the model for our 2D photonic quantum Hall system
with synthetic magnetic and synthetic electric fields. In
Sec. III we use the lattice photonic Green’s function to
provide a basic description of photon propagation across
the bulk of this system and for the appearance of effec-
tive chiral waveguide modes. In Sec. IV we study the
dynamics of a single emitter coupled to the photonic
lattice and discuss the different regimes of light-matter
interactions in this setup. In Sec. V we show how the
non-Markovian emission dynamics in the critical-coupling
regime enables high-fidelity quantum-state transfer oper-
ations between two emitters in the lattice. In Sec. VI
we extend our results to arbitrary electric field profiles
and establish the concept of photonic percolation quan-
tum networks. Finally, in Sec. VII we summarize our main
conclusions.

II. THE MODEL

A. Light-matter interactions in photonic lattices

We consider the system depicted in Fig. 1(a), where N
(artificial) two-level emitters with frequency ωe are locally
coupled to a two-dimensional photonic lattice with dimen-
sions Lx and Ly . We denote the position of the ith lattice site
by �ri = (xi, yi) and consider a simple square lattice geome-
try with lattice spacing l0 and M = LxLy/l20 lattice sites in
total. We also assume that the number of emitters is much
smaller than the number of lattice sites, N � M .

As shown in Fig. 1(b), every single lattice site repre-
sents a localized photonic mode with frequency εi and
annihilation operator �i ≡ �(�ri). By considering only
nearest-neighbor hopping between the localized modes,
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FIG. 1. Photonic quantum Hall system. (a) Sketch of a 2D pho-
tonic lattice with a perpendicular synthetic magnetic field and an
in-plane synthetic electric field. In analogy to Hall currents, this
configuration results in the formation of chiral waveguide modes.
Coupling of two-level emitters to the chiral waveguide modes
leads to the directional emission and reabsorption of photons.
(b) Schematic view of the photonic hopping amplitudes for the
specific Landau-gauge, Harper-Hofstadter lattice configuration
under consideration. (c) Spectrum of the photonic lattice Hamil-
tonian Hph in Eq. (1), where the energy of each mode is plotted as
a function of the mean displacement of its center of mass along
the x direction. In this representation, the tilting of the Landau
levels by the electric field and the presence of edge modes at the
boundaries are clearly visible. The parameters used for this plot
are α = 1/10, Nx = Ny = 40, and U0/J = 0.05 and we assume
periodic boundary conditions (PBCs) along the y direction.

the general lattice Hamiltonian is given by

Hph =
M∑

i=1

εi�
†
i �i − �J

∑

〈ij 〉

(
eiφij�

†
i �j + H.c.

)
. (1)

The tunneling amplitude is complex valued, with a nontriv-
ial phase φij to break time-reversal symmetry. In our sys-
tem we use this phase to generate a homogeneous synthetic
magnetic field for photons by imposing φij = e

�

∫ �ri
�rj

�A(�r) ·
d�r [6], with �A(�r) = B(0, x, 0) being the synthetic vector
potential for a homogeneous synthetic magnetic field taken
for simplicity in the Landau gauge. As usual, we express
the strength of the magnetic field in terms of the dimen-
sionless parameter α = e�/(2π�), where � = Bl20 is the
flux enclosed in a single plaquette. Going beyond the setup
considered in Ref. [55], here we impose an additional
linear frequency gradient,

εi = −eE xi + �ωp , (2)

where ωp is the bare frequency of the local modes. This
simulates the effect of a homogeneous electric field in the

x direction. The strength of field is characterized by a volt-
age drop U0 = eEl0 between two neighboring sites. This
situation is then similar to a solid-state system, where the
effect of a crossed magnetic field �B and an electric field �E
gives rise to a quantized Hall current �JH ∼ �E × �B, which
flows, in our convention, along the y axis.

Including the emitters and their coupling to the local
photon modes, the total Hamiltonian for this setup is given
by

H = Hph +
N∑

n=1

�ωn
e

2
σ n

z +
N∑

n=1

(
�gn

2
�(�rn

e)σ
n
+ + H.c.

)
.

(3)

Here, the σ n
z/± are Pauli matrices for an emitter at position

�rn
e , while ωn

e ≈ ωp and gn are its transition frequency and
the strength of the light-matter coupling, respectively.

B. A photonic lattice in the quantum Hall regime

Since the photons are noninteracting, the properties of
the photonic lattice are fully encoded in the eigenfrequen-
cies ωλ and eigenmodes fλ(�ri) of the hopping matrix, i.e.,
in the solutions of the eigenvalue equation

∑

j

(
εiδij − �Jeiφij δ〈ij 〉

)
fλ(�rj ) = �ωλfλ(�ri), (4)

where δij is the Kronecker δ, and δ〈ij 〉 is the Kronecker δ
for nearest neighbors.

For a nonzero magnetic flux, α 	= 0, and a homogeneous
on-site frequency εi = �ωp for all lattice sites, the photonic
spectrum is given by the famous Hofstadter butterfly [56],
where all the eigenvalues are grouped in a finite number
of narrow Landau levels, with energies that are symmet-
rically distributed around ωp . A first consequence of the
presence of a finite electric field is the broadening of these
levels into bands with a width approximately U0Nx. This is
clearly visible in Fig. 1(c), where we plot the eigenfrequen-
cies ωλ (black dots) as a function of the mean displacement
of the corresponding mode function, 〈x〉 = ∑

i xi |fλ(�ri)|2,
for finite α and a finite voltage drop U0. Here, the most
visible effect of the synthetic electric field is the tilting
of the photonic Landau level with a slope proportional to
approximately U0.

In the intermediate magnetic field regime, where l0 <
lB < Lx,y and lB = √

�/eB = l0/
√

2πα is the magnetic
length, Eq. (4) can be approximated by a differential
equation in the continuum, which recovers the form of a
Schrödinger equation for a particle in an external electric
and magnetic field [55]. The photonic eigenmodes of the
lattice can then be approximated by Landau levels in the
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continuum, fλ(�ri) ≡ ��k(�ri), where

��k(�r) = l0
eiky
√

Ly
ϕh.o.
�

(
x + l2Bk − lB

UB

�ωB

)
(5)

and ϕh.o.
� (x) is the �th harmonic oscillator eigenfunction

with oscillator length given by the magnetic length lB
(see Appendix A for more details). In Eq. (5), the index
� = 0, 1, 2, . . . labels the discrete Landau levels and k is
the wavevector along the y direction. We also introduce
the parameter

UB = eElB, (6)

which characterizes the interplay between the magnetic
and the electric field and corresponds to the voltage drop
across a cyclotron orbit. In the following, we refer to UB as
the Landau voltage and we see how it plays a crucial role
in determining the light-matter coupling dynamics.

In the presence of the electric field, the Landau levels
are no longer degenerate and their energy is approximately
given by

�ω�k ≈ �ωb + �ωB

(
�+ 1

2

)
+ �ω

(2)
�

+ UB

(
lBk − UB

2�ωB

)
, (7)

where ωb = ωp − 4J is the frequency of the lower band
edge and ωB = 4παJ is the cyclotron frequency. Here we
also include the second-order correction to the Landau
levels due to lattice discretization [55],

ω
(2)
� = − ω2

B

32J
(
2�2 + 2�+ 1

)
, (8)

which is necessary to match this analytic result with exact
numerics. In Fig. 1(c) we compare Eq. (7) (red dashed
lines) to the full spectrum (black dots) obtained via a
numerical diagonalization of Eq. (4). For the analytic
results in this plot, we approximate the average displace-
ment of the eigenmodes by 〈x〉 � −l2Bk + UBlB/(�ωB). We
see that Eq. (7) predicts very accurately the lowest energy
bands for the bulk modes, while the highest energy bands
are given by a symmetric mirroring of the lowest states. Of
course, the continuum approximation fails near the center
of the band, where the effect of the discretization become
important. As we see in what follows, the linear shape of
the dispersion relation in Eq. (7) plays a crucial role since
it guarantees that wavepackets do not suffer broadening or
distortion during propagation.

Note that because we consider a finite lattice, we have
a limited number of bulk modes in each Landau level �.
The eigenmodes are localized states along the x direction,

with a spatial extension of �x ∼ √
1 + � lB and centered

at the k-dependent position 〈x〉 = −l2Bk + UBlB/(�ωB). As
such, the number of states in each Landau level can be
estimated by counting the number of k modes with spac-
ing �k = 2π/Ly that cover the distance Lx. For example,
based on this estimate, the lowest Landau level (LLL) with
� = 0, contains about M�=0 ≈ LxLy/(2π l2B) = Mα states
for which 0 < k < Lx/l2B.

The remaining states outside this range are instead fully
localized on the edge and represent the usual topological
edge modes. In Fig. 1(c) we can see that for states at the
boundary of the system, where 〈x〉 ∼ 0, Lx, the eigenfre-
quencies lie outside the tilted Landau level, and form a
band of edge states. Note, however, that in contrast to the
dispersionless bulk states, the large variation of the group
velocity along the edges typically leads to a significant
broadening and deformation of propagating wavepackets.

III. QUANTUM HALL TRANSPORT FOR
PHOTONS

In this section we provide a theoretical framework to
describe the single-photon dynamics in this synthetic quan-
tum Hall configuration. In particular, this analysis high-
lights one of the most important consequences that arises
from the presence of both magnetic and electric fields: the
photonic bulk, often referred as a Chern insulator, allows
now for propagation and transport in a direction perpen-
dicular to the two fields. This is the direct photonic analog
of the quantum Hall effect for electrons.

A. Photon Green’s function

In order to describe the quantum Hall dynamics we
make use of the photonic Green’s function (or propaga-
tor). In its general form, this Green’s function can be
expressed in terms of the photonic eigenmodes and their
corresponding eigenfrequencies as

G(t, �ri, �rj ) = 〈vac|�(t, �ri)�
†(0, �rj )|vac〉

=
∑

λ

fλ(�ri)f ∗
λ (�rj )e−iωλt (9)

and provides the propagation amplitude of a photon from
position �rj to position �ri in a time t.

Using the approximated forms of the photonic eigen-
modes and eigenfrequencies given in Eqs. (5)–(7), we can
write down an explicit expression for the Green’s function
restricted to the LLL,

G�=0(t, �ri, �rj ) ≈ l20
2π l2B

ei(θij −ωLL
�=0t)e

− |�ri−�rj |2
4l2B I(t, �ri, �rj ). (10)

030306-4



CHIRAL QUANTUM OPTICS IN THE BULK OF PHOTONIC. . . PRX QUANTUM 4, 030306 (2023)

Here θij is the (gauge-dependent) phase

θij = −xiyj − xj yi

2l2B
+ xiyi − xj yj

2l2B
, (11)

and

ωLL
� = ωb + ωB

(
�+ 1

2

)
+ ω

(2)
� (12)

is the frequency of the �th Landau level.
The electric field enters in the dynamics only through the

time-dependent part of the propagator, I(t, �ri, �rj ), which is
given by

I(t, �ri, �rj ) = 2
√
π lB

Ly

∑

k

e
−

(
lBk− (xi+xj )−i(yi−yj )

2lB
+ UB

�ωB

)2

× ei
[
cH k+U2

B/(2�
2ωB)

]
t. (13)

Here the Hall speed of propagation is given by the usual
formula

cH = UBlB
�

= E
B

. (14)

While there is no simple compact form for Eq. (13) in the
general case, it is possible to simplify the problem in the
limit Ly → ∞. In this limit, the sum in Eq. (13) can be
approximated by an integral by substituting 2π/Ly

∑
k �→∫

dk, and we obtain

I(t, �ri, �rj ) � e− U2
Bt2

4�2 e
i
(

xi+xj +i(yi−yj )
2lB

− UB
2ωB

)
UBt/�

. (15)

For a vanishing magnetic field, UB = 0, this expression
reduces to a constant, I(t, �ri, �rj )|UB=0 = 1, meaning that
photons do not propagate. In the presence of emitters, this
property gives rise to the formation of localized Landau-
photon polaritons, as described in Ref. [55].

By combining Eqs. (15) and (10) we obtain the total
Green’s function in the continuum for an infinitely large
system,

G0(t,�x,�y) = l20
2π l2B

e
−�x2

4l2B e− 1
4 (UBt/�−�y/lB)2

× ei[θij −(ωch(xj )+ωch(xi))t/2]. (16)

Here, �x = xj − xi and �y = yj − yi, and we introduce
the position-dependent Hall-channel resonance frequency

ωch(x) = ωLL
�=0 − UB

�

x
lB

+ U2
B

2�2ωB
, (17)

which includes a second-order correction due to mixing
with the higher Landau levels by the synthetic electric

field. From Eq. (16) we see that for �y > 0 the photon
emitted in yj can coherently propagate to yi at the Hall
speed cH , provided that |xi − xj | � lB. On the other hand,
for �y < 0 the propagation is exponentially suppressed
(for t > 0). This clearly shows that the photon propagation
is unidirectional (or chiral) and without any dispersion.

In summary, our calculations show that for each point
in the bulk, the photonic lattice behaves as a unidirectional
waveguide along the y direction, perpendicular to both the
electric and the magnetic field and with a Gaussian trans-
verse size �x ∼ lB fixed by the magnetic length. This is
schematically shown in Fig. 1(a). Each chiral channel at
position x has its own resonance frequency ωch(x), and it
is detuned from neighboring channels at positions x ± l0
by �|�ω| = U0.

We emphasize that these considerations are only valid
in the regime of weak magnetic field strengths [55], which
is the regime of interest for the current study and holds
approximately for α � 1/6. For larger values of the mag-
netic flux the dynamics is more complicated and exhibits
Bloch oscillations and other discrete-lattice effects. For the
sake of clarity, we do not address this regime here and refer
to Refs. [57,58] for further details. In any case, note that
all the presented results have been benchmarked against
numerical simulations of the full lattice dynamics, i.e.,
with no approximations.

B. Local density of states

The photonic Green’s function derived above is useful
not only to describe the propagation of a photon through
the lattice, but also to extract the local density of states,
defined as

ρph(�r,ω) =
∫

dt G(t, �r, �r)eiωt. (18)

In the following we show that this quantity is particularly
important for describing the dynamics of a single emitter
that is coupled to the photonic lattice at a position �r.

From Eq. (16) we can derive an analytic expression for
the local density of states for the LLL,

ρ�=0
ph (�r,ω) ≈ 2

√
πα�

UB
e
− �

2[ω−ωch(x)]2

U2
B . (19)

This expression shows that as long as the relevant sys-
tem dynamics takes place in a narrow range of frequencies
�|ω − ωch(x)| � UB, the bulk behaves effectively as a con-
tinuous 1D waveguide, with an almost constant density
of states. However, for a lower value of the electric field
or when the dynamics involves a wider range of frequen-
cies, �|ω − ωch(x)| > UB, the density of states decays very
rapidly and non-Markovian effects start to play a relevant
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role. In this regime, the direct analogy with a conven-
tional chiral waveguide breaks down and new phenomena
appear, as we see in the next section.

The shape of the density of states in Eq. (19) is quite
surprising at first sight. Indeed, by looking at Fig. 1(c) and
at the analytic estimates given above, one would expect an
approximately flat density of states over the whole width
approximately U0Mx of the tilted Landau level, where
Mx = Lx/l0. Instead, our calculations show that the effec-
tive photonic bandwidth within each Landau level that is
accessible to a localized emitter is determined by the Lan-
dau voltage UB, independently of the lattice size. This is
due to the peculiar lateral localization of the chiral bulk
modes at a ky-dependent x position, which modulates the
effective light-matter coupling.

Before we proceed, it is important to emphasize how
this behavior is different from the one of standard systems
in chiral quantum optics. A nontrivial shape of the pho-
tonic density of states is in fact also seen by an emitter
coupled to the chiral edge states, the frequency variation
arising from the frequency-dependent penetration length of
the edge states into the bulk. In contrast to our case, how-
ever, this density of states is relatively smooth and does not
display a quick Gaussian decay away from the central fre-
quency. This seemingly minor difference is at the heart of
the state-transfer application that we are going to discuss
for the bulk modes in the next sections.

IV. COUPLING REGIMES IN PHOTONIC
QUANTUM HALL SYSTEMS

Let us now go beyond the sole propagation of photons
and consider an additional quantum emitter located at a
position �re = (xe, ye) in the bulk of the lattice, as described
by the total Hamiltonian in Eq. (3), with N = 1. Since there
is only a single emitter here, we suppress the index n and
set ωn

e , gn �→ ωe, g.
By assuming that the emitter is initially prepared in its

excited state with no photons in the lattice, the result-
ing dynamics of the system is constrained to the single-
excitation subspace and can be described by a wave
function of the form

|ψ〉(t) = e−iωet[ce(t)σ++
∑

i

ϕ(�ri, t)�†(�ri)]|g〉|vac〉.

(20)

By projecting the Schrödinger equation onto this subspace,
we can derive a set of equations for the time evolution of
the emitter amplitude ce(t) and for the wave function of
the photon, ϕ(�ri, t) [59–61]. These equations can be read-
ily integrated numerically, which we use to produce most
of the results discussed in the following. Alternatively, we
can eliminate the dynamics of the emitted photon to derive

a closed equation for the emitter amplitude [55],

ċe(t) = −g2

4

∫ t

0
ds G(t − s, �re, �re)ce(s)eiωe(t−s). (21)

This is an integrodifferential equation, with the photonic
Green’s function evaluated at the emitter position �re as
the memory kernel. This memory kernel describes both
the photon’s emission from the atom and its eventual
reabsorption.

While in general there is no closed analytic solution
of Eq. (21), we can use an approximate expression for
the photonic Green’s function to obtain additional useful
insights into the emitter-photon dynamics. In particular,
with the help of the Gaussian approximation for the LLL
in Eq. (19), we obtain

ċe(t) = −g2α

4

∫ t

0
ds e−U2

B(t−s)2/(4�
2) ei�e(t−s) ce(s), (22)

where we introduce the position-dependent detuning

�e = ωe − ωch(xe). (23)

Under the assumption �e ≈ 0, this approximate form
allows us to identify three qualitatively different coupling
regimes:

1. Weak-coupling regime, �g
√
α � UB. In this limit

the density of states is almost flat and the Green’s
function decays on a timescale that is fast compared
to the evolution of the emitter. This leads to an effec-
tively Markovian dynamics, with an exponential
decay of the excited state.

2. Strong-coupling regime, �g
√
α � UB. Under this

condition the coupling strength exceeds the relevant
bandwidth UB of the density of states and the emit-
ted photons can be reabsorbed before they propagate
away. Such conditions lead to the formation of so-
called atom-photon bound states [62,63], which do
not decay.

3. Critical-coupling regime, �g
√
α � UB. For these

parameter values, the absence of a sharp band edge
allows the excited-state population to fully decay
to zero, but the sizeable frequency-dependence of
the density of states makes a crucial difference from
other narrow-band waveguide systems and, as we
discuss in detail below, this results in a strongly non-
Markovian dynamics and, in particular, in an almost
symmetric shape of the spontaneously emitted pho-
ton wavepacket.

Note that the relevant coupling parameter in this discussion
is g

√
α, rather than the bare light-matter coupling g. This

is related to the fact that the local density of states scales
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as approximately α, resulting in an additional factor
√
α in

the effective coupling strength [55]. Physically, this factor
can also be understood from the spatial width lB ∼ 1/

√
α

of the waveguide mode in the transverse direction.
In the following, we proceed with a brief discussion of

the photon-emission dynamics in those three regimes for a
situation, where the emitter is far away from the boundary.

A. Weak coupling regime: Markovian spontaneous
emission

The linear dispersion of the photonic Landau levels
introduced by the electric field E and captured by Eq.
(7) implies that photons can propagate across the lattice.
Therefore, a photon locally created by the emitter can
leave the interaction region, which leads to spontaneous
decay. This is in stark contrast to the case E = 0, where
spontaneous emission is forbidden and is replaced by the
formation of bound polaritonic states between the emitter
and the localized Landau photons [55,64].

In the standard theory of spontaneous decay [65], the
exponential decay of the atomic population arises from a
Markov approximation. The validity of this approximation
requires that the density of states of the photonic is approx-
imately constant over a sufficiently large frequency range.
In the current setting, this is the case when the relevant
timescale of the emitter’s dynamics given by g

√
α is slow

compared to the inverse of the effective bandwidth UB/�

identified above. Under this assumption we can approxi-
mate the photonic Green’s function appearing in Eq. (21)
as

G(t − t′, �r, �r) ≈ ρph(�r,ωe) δ(t − t′), (24)

and obtain a Markovian, i.e., memoryless equation for the
emitter amplitude

ċe(t) ≈ −g2

4
ρph(�re,ωe) ce(t). (25)

By using the continuum approximation for the Green’s
function in Eq. (19), we find that the excited-state ampli-
tude decays exponentially,

ce(t) ≈ e−�et, (26)

where the decay rate

�e =
√
π

2
�g2α

UB
e−�

2�2
e/U

2
B (27)

is inversely proportional to the applied electric field UB ∼
E and has the expected Gaussian dependence on the
position-dependent emitter detuning �e.

In Fig. 2(a) we perform an exact numerical simulation
of the decay of an excited emitter in a finite lattice with

exact

Markov 
approx.

continuum 
approx.

0.0
1 2 3 4 5

0.2
0.4
0.6
0.8
1.0

0

15

30
0.020.00(a) (b)

0 0 51 03

FIG. 2. Spontaneous emission dynamics of a single emitter
in the weak-coupling regime. (a) Plot of the excited-state pop-
ulation Pe = |ce(t)|2 as a function of time. The blue crosses
represent the results from an exact numerical simulation, while
the solid black line shows the prediction from Eq. (22). The green
dashed line indicates an exponential decay with a rate �e given
in Eq. (27). (b) Snapshot of the photon density |ϕ(�r, t)|2 of the
emitted wavepacket at a time t > 0 well after the spontaneous
emission process. The white arrow marks the direction of prop-
agation. The parameters for both plots are α = 1/20, Nx = 31,
Ny = 100, U0/J = 0.001, �e/J ≈ 0, and �g = 0.4UB/

√
α ≈

0.003�J . The emitter is located at the position �re/l0 = (15, 50).

periodic boundary conditions along the y direction. These
results are compared to the dynamics predicted by Eq. (22)
for the continuum limit. We see that in this weak-coupling
regime, the continuum approximation is in excellent agree-
ment with exact results. This simulation also confirms that
apart from small deviations at the initial stage, the temporal
profile of the decay is very well captured by an exponential
decay with a rate �e given in Eq. (27).

In Fig. 2(b) we also show a snapshot of the emitted
photonic wavepacket, |ϕ(�r, t)|2. This plot confirms that
the emitted photon is localized along the x axis within a
magnetic length lB and propagates along the y axis with
Hall speed cH . As it is typical for spontaneous emis-
sion, the wavepacket is asymmetrically stretched along
the propagation direction, with a sharp front edge and a
long exponential tail of characteristic length approximately
cH/�e.

B. Strong coupling regime: atom-photon bound states
in the chiral continuum

For very large values of the light-matter coupling,
�g > UB/

√
α, the emitter dynamics is dominated by non-

Markovian effects, which arise from the finite width of the
density of states given in Eq. (19). In particular, the den-
sity of states is strongly suppressed outside a frequency
band of width approximately UB, meaning that the Green’s
function in Eq. (21) can be approximated by a constant,
G(t − s, �re) ≈ α, over the relevant timescale of the emitter
dynamics. This allows us to approximate the equation for
the emitter amplitude ce(t) by a second-order differential
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equation.

c̈e(t) ≈ −�
2

4
ce(t), (28)

where the Rabi frequency is given by

� = g
√
α. (29)

This equation indicates the presence of an atom-photon
bound state [62,63], as an exact eigenstate of the system,
and recovers the Landau-photon polariton (LPP) picture
described in Ref. [55]. Indeed, numerical simulations con-
firm that the photonic component of this bound state has
the shape of a standard Landau orbital with no visible effect
from the electric field. However, while for E = 0 LPPs
already appear at arbitrarily small values of the coupling
strength [55], in the present configuration bound states
require a minimal coupling strength that exceeds UB.

In Figs. 3(a) and 3(b) we show the emitter dynam-
ics as we progressively enter the strong coupling regime.
Already for �g

√
α = 2UB we see clear non-Markovian

effects and marked oscillations, but at longer times the
emitter dynamics keeps being dominated by a monotonous
decay. For higher coupling strengths, �g

√
α = 8UB, we

observe only a small initial decay followed by persis-
tent Rabi oscillations between the photonic and the matter
components of the bound state. The fact that the Rabi oscil-
lations in Fig. 3(b) are incomplete, i.e., Pe(t = 2πn/�) <
1 for n = 1, 2 . . ., is due to the smoothly decaying tail of
the density of states, which still allows a small fraction
of the excitation to propagate away into the lattice. By
further increasing the light-matter coupling �g

√
α � UB

the Rabi oscillations progressively reach their maximum
value Pe(t = 2πn/�) ≈ 1. These observations are consis-
tent with the formation of atom-photon bound states in
other narrow-band waveguide QED systems.

However, we re-emphasize that in our case this effect
appears under conditions where the effective coupling is
still small compared to the total width of the LLL and,
in general, the total lattice bandwidth, �g

√
α � U0Nx �

8�J . Interestingly, note that in an infinite lattice the pho-
ton has a continuum spectrum and, strictly speaking, these
atom-photon bound states belong to the class of so-called
bound state in the continuum (BIC) [48,49]. This may look
quite odd, since BICs are thought not to exist in geome-
tries where photons propagate chirally. The controversy
is easily solved by noticing that only the local density of
states matters for this kind of bound state. As previously
highlighted, even though the photon has a continuum spec-
trum, the states accessible to the atom are limited by the
Gaussian density profile Eq. (19). This makes the photon
to locally have an effectively finite bandwidth, and thus to
follow the standard rules for atom-photon bound states in
conventional finite-band configurations [62,63].

1.0

0.2
0.4
0.6
0.8

0.0 0 1 2 3 40 1 2 3 4

(a) (b)

exact

continuum 
approx.

FIG. 3. Evolution of the excited-state population Pe = |ce(t)|2
of an initially excited emitter in the strong-coupling regime,
where (a) �g = 2UB/

√
α and (b) �g = 8UB/

√
α. The blue

crosses represent the results from an exact numerical simulation,
while the solid black line shows the prediction from Eq. (22) in
the continuum limit. The other parameters assumed for both plots
are α = 1/20, Nx = Ny = 40, U0/J = 0.01, and �e/J ≈ 0.

C. The critical-coupling regime

As we increase the coupling strength from the weak to
the strong coupling regime, the system passes through a
critically coupled regime where

�g ≈ UB√
α

. (30)

As shown in Fig. 4(a), under this condition the decay
dynamics of the excited emitter is no longer Markovian,
but Rabi oscillations, as characteristic for the strong-
coupling regime, are not yet visible either. This condition
is of interest for two reasons. First of all, setting �g ≈
UB/

√
α is the largest coupling that still allows spontaneous

emission before being suppressed in the strong-coupling
regime, resulting in the fastest way to fully de-excite the
emitter in a time �−1

e ≈ U−1
B . Secondly, when looking at

the shape of the emitted photon in Fig. 4(b), we find that
the wavepacket is very compact, also along the y direc-
tion. This property is shown in more detail in Fig. 4(c),
where we plot a cut of the emitted photon wave func-
tion along the y direction and we compare it with the one
obtained in the weak-coupling regime: we see that in the
critical coupling case the wavepacket is not only highly
localized, but also almost symmetric around its maxi-
mum and travels through the lattice without any significant
dispersion.

While the formation of effective 1D chiral channels is
a property of the photonic lattice itself, the emission of
such symmetric wavepackets is connected to a specific
light-matter interaction regime and goes beyond the usual
quantum Hall physics. While this seems to be a minor
detail for the emission process, in what follows we show
how this symmetry becomes an essential property when
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FIG. 4. (a) Excited-state population of a single emitter Pe =
|ce(t)|2 as a function of time. The blue crosses represent the
results from an exact numerical simulation, while the solid black
line shows the prediction from Eq. (22) in the continuum limit.
The green dashed line indicates an exponential decay with a
rate �e given in Eq. (27). (b) A snapshot of the photon den-
sity |ϕ(�r, t)|2 of the emitted wavepacket at a time t ≈ 202J −1 ≈
23�−1

e . The white arrow marks the direction of propagation. In
both plots we assume α = 1/10, Nx = Ny = 31, U0/(�J ) = 0.1,
�e/J = 0, and �g = UB/

√
α ≈ 0.4�J . The emitter is located

at �re/l0 = (15, 15), as indicated by the green dot. (c) Integrated
photon density profile ht(y) = ∫

dx|ϕ(x, y, t)|2 for a photon emit-
ted in the Markovian regime with �g = 0.3UB/

√
α (green line)

and from a critically coupled emitter with �g = UB/
√
α (red

line). The black arrow indicates the propagation direction while
the green dashed line marks the emitter position at �re/l0 =
(10, 70). The two snapshots are taken at the same time Jt ≈ 64.
In this plot we assume α = 1/10, Nx = 20, Ny = 80, U0/(�J ) =
0.1, and �e/J = 0. Both results in (c) are obtained from a
numerical simulation of the full lattice dynamics.

studying the reabsorption of the photon by other emitters
in the system.

D. Beyond the single Landau level approximation

Our discussion of the different coupling regimes is so far
based on the assumption that the emitter is primarily cou-
pled to the states in the LLL. This assumption is justified
as long as the light-matter coupling g is small compared to
the gap �gap ∼ ωB between the Landau levels. This corre-
sponds to g � ωB. In order to reach the critical or strong
coupling conditions, we require �g � UB/

√
α, such that

UB/(�ωB) = U0/(2(2πα)3/2J ) can be of order approxi-
mately O(1) already for moderately strong electric fields.
This means that the restriction to the LLL might not be
well justified in this regime.

0.0 0.5 0.0 0.5 0.0 0.5 1.0 1.5

0.00

–0.50

0.50

0.25

–0.25

0

1

“w
eak”

“critical”

“strong”

FIG. 5. Plot of the emitter excitation spectrum Se as a func-
tion of the excitation frequency ω and the light-matter coupling
strength g. The three panels show this spectrum for different val-
ues of the electric field, expressed in terms of the Landau voltage
UB = eElB. In each panel, the green dashed line marks the critical
coupling value �g = UB/

√
α. The gray-shaded area in the last

panel is the weak-coupling (Markovian) regime, whose bound-
ary is given by �g ≈ UB/(2

√
2α), as it is defined in traditional

cavity QED setups with a Gaussian inhomogeneous broaden-
ing of the emitters [66–68]. The other parameters are α = 1/10,
Nx = Ny = 30, and �e/J ≈ 0. In all plots an artificial broaden-
ing γδ/J = 0.015 of all states is introduced to obtain a smooth
spectrum.

To investigate the influence of higher Landau levels, we
analyze the excitation spectrum of the emitter,

Se(ω) =
∑

ν

| 〈ν|σ e
+|G〉 |2δ(ω − ων). (31)

Here |ν〉 and ων are the νth eigenstate and eigenfrequency
of the full coupled Hamiltonian in Eq. (3), while |G〉 is its
ground state.

The excitation spectrum Se(ω) is plotted in Fig. 5
as a function of the coupling strength g and for dif-
ferent strengths of the electric field. In the strong cou-
pling regime, where �g � UB/

√
α, Se(ω) displays two

branches, which are split by � and corresponds to the
bound states discussed above. For very small electric
fields, i.e., UB � �ωB, the two branches are very narrow
and almost symmetric, with only a small downward shift
of the frequency of the upper bound state. This shift of
the upper branch can be understood as a second-order cor-
rection given by the presence of the higher Landau level.
However, since the states in the � = 1 Landau level are
spatially well separated from the � = 0 states at the same
energy, as one can see in Fig. 1(c), their effect is still small,
acting only perturbatively on the bound-state dynamics.

By increasing the electric field to values of UB ≈ �ωB,
the coupling to the higher Landau level becomes more rel-
evant, since resonant states in different � manifolds have a
larger spatial overlap. This is most visible for the upper
bound state. As its energy approaches the next Landau
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level, it becomes progressively more broadened, due to the
increasing possibility to decay into propagating modes in
the � = 1 manifold. The effect on the lower bound state is
much weaker as this state is further detuned from the � = 1
levels and thus the effective tunneling barrier to resonant
propagating states is wider.

More quantitatively, the higher Landau levels result in
additional peaks in the density of states, which are sepa-
rated by multiples of �ωB and can be well approximated
by

ρ�ph(�r,ω) ≈ 2
√
πα�√

2� �! UB
H 2
� (ω − ωch(x)− �ωB)

× e
− �

2[ω−ωch(x)−�ωB]2

U2
B , (32)

where H�(x) is the �th Hermite polynomial. From this
approximate expression for the density of states, we can
interpret higher Landau levels in the presence of an electric
field as regular Landau levels that are shifted in space by
�xB ≈ ��ωB/U0. In this picture, the negligible coupling
to neighboring Landau levels can be explained in terms of
the reduced spatial overlap approximately exp(−�ω2

B/U
2
B)

between the wave functions, which is strongly suppressed,
unless the electric field is very strong.

Finally, for very strong electric fields, UB � �ωB, as
shown in the right panel of Fig. 5, the strong-coupling
regime cannot be reached without having the light-matter
coupling comparable or even larger than the energy gap
between the neighboring Landau levels. As a consequence,
the upper bound-state is strongly broadened by a signifi-
cant hybridization with a wide band of propagating states
in the � = 1 Landau level.

V. QUANTUM REVIVALS AND STATE TRANSFER

In this section we now explore in more detail one of the
most remarkable features of the critical coupling regime,
namely the symmetry between emission and absorption
processes. Due to the symmetric shape of the emitted
wavepacket and its unidirectional propagation, the emis-
sion of a photon in this regime is indistinguishable from
the time-reversed reabsorption process of the same photon.
In the quantum communication literature [23], this sym-
metry argument has been used to derive specific control
pulses g(t), which produce such symmetric wavepackets
and thus allow for high-fidelity state-transfer operations
in unidirectional Markovian channels. Here we find that
in our proposed configuration this symmetry emerges nat-
urally and without any time-dependent control from the
non-Markovian dynamics of a critically coupled photonic
quantum Hall system.
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FIG. 6. Evolution of the excited-state population Pe = |ce(t)|2
(left panels) and snapshot of the emitted photon density |ϕ(�r, t)|2
(right panels). In (a) the emitter is weakly coupled with g

√
α =

0.3 UB/� ≈ 0.038 J , while (b) shows the case of a critically
coupled emitter with g

√
α = UB/� ≈ 0.126 J . In both cases

J τrev ≈ 390. The other parameters for these plots are α = 1/10,
Nx = 31, Ny = 61, U0/(�J ) = 0.1, �e = 0 and the emitter is
located at �re/l0 = (15, 53). All results have been obtained from a
numerical simulation of the full lattice dynamics.

A. Quantum revivals

To analyze reabsorption processes in our system, let us
stick to the case of a single emitter, but now in a lattice with
periodic boundary conditions (PBCs) along the y direction.
In this case the emitted photon still propagates unidirec-
tionally with a group velocity set by the Hall speed cH
and without any significant dispersion. However, after a
round-trip time

τrev = Ly/cH (33)

the photon will reach again its initial position, where it can
be partially or fully reabsorbed by the emitter.

In Figs. 6(a) and 6(b) we simulate this emission and
reabsorption process under weak-coupling and critical-
coupling conditions, respectively. In the first case, we see
that after each round trip only a fraction of about 60%
of the initial excitation is reabsorbed. This is very simi-
lar to what is expected for photon reabsorption in a 1D
Markovian channel without any time-dependent control.
In contrast, for a critically coupled emitter, the photon is
reabsorbed with more than P = 95% probability, and sig-
nificant revivals can still be observed after multiple round
trips. This near-perfect reabsorption can also be interpreted
as a coherent quantum revival effect, where all the eigen-
modes forming the initial state in Eq. (20) periodically
rephase, i.e., ce(t = nτrev) � ce(0) for n = 1, 2 . . ..
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FIG. 7. Maximum value of the revival probability Prev of the
excited-state population after a time t ∼ τrev. This probability is
plotted as a function of the light-matter coupling g and the local
detuning �e. These results are derived from Eq. (21), using the
continuum Green’s function with PBC and for α = 1/10 and
Ly/l0 = 200.

As mentioned above, we can understand this high reab-
sorption probability from the symmetry and the dispersion-
free propagation of the emitted wavepacket, as shown in
the right panels in Fig. 6. To see under which conditions
this effect occurs, we plot in Fig. 7 the maximal revival
probability Prev as a function of the coupling strength g and
the (local) detuning �e of the emitter from the LLL. This
plot confirms that high revival probabilities of Prev > 0.9
can be observed within an extended parameter regime and
without the need for a precise fine tuning of any of the
system parameters.

B. Bulk-edge quantum channels

Let us now switch to the experimentally more realis-
tic scenario of a lattice with open boundary conditions.
In this case the emitted photon cannot simply return to
the emitter by propagating along a straight line. Instead,
once it reaches the lattice boundary, the propagation via
edge modes, which so far we omit from our analysis,
becomes important. Surprisingly, we find that the essential
features discussed for periodic systems survive for pho-
tonic quantum Hall systems with edges. This is illustrated
in Fig. 8, where we compare the characteristic shape of an
eigenmode of a periodic lattice with that of a lattice with
open boundary conditions. While within the bulk region,
both mode functions are very similar, in the case of open
boundary conditions the mode function continues along the
edges. Therefore, also in this case the photons can travel in
loops and return to the emitter.

In order to verify that this peculiar shape of the photonic
eigenmodes creates an equivalence between lattices with
periodic and open boundary conditions, we consider again
a critically coupled emitter, but now located in the mid-
dle of a finite-size lattice. In Fig. 9(a) we then show three
snapshots of the emitted photonic wave function, similar to
the situation considered in Fig. 6(b) for PBC. We see that

(a)
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FIG. 8. (a) Sketch of a lattice with PBC along the y axis and
OBC on the x axis, and with an homogeneous out-of-plane mag-
netic field and an homogeneous in-plane electric field along the
x axis (left panel). In this case the photonic eigenmodes fλ(�ri) are
approximately described by the Landau wave functions in Eq.
(5), which are homogeneous stripes along the y direction with
lateral size approximately lB (right panel). (b) Sketch of the same
lattice, but with OBC along both x and y (left panel). In such a
lattice, photonic eigenmodes form closed loops along the edge
(right panel). The lattice parameters assumed for both cases are
α = 1/20 and Nx = Ny = 41.

when the photon reaches the lower boundary of the sys-
tem, it is transported along the edge to the upper boundary.
Here, it makes a turn and propagates again through the bulk
towards the emitter.

In Fig. 9(b) we plot the corresponding time evolution of
the excited-state population Pe(t) = |ce(t)|2. In exactly the
same way as in the case of PBC, the emitter population
undergoes almost complete revivals after a time that, in
spite of the much longer path, is still close to τrev given in
Eq. (33) as a result of the much higher propagation speed
along the edges.

C. Guiding centers, equipotential lines, and photonic
demultiplexing

The appearance of closed-loop channels, where photons
propagate both in the bulk and along the edges, is puzzling
at first, since it seems to break the familiar concept of topo-
logically protected edge states. However, the existence of
such loops can be understood from an essential property of
Landau wave functions in external potentials [69], namely
that wavepackets move along guiding center trajectories
that follow the equipotential lines of this external potential
landscape.

In the bulk of the lattice, this principle readily explains
the motion of the photons along straight lines, which are
the equipotential lines of the linear potential gradient along
the x direction. The behavior of the photons near the edges
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FIG. 9. (a) Snapshots of the photon density |ϕ(�r, t)|2 at three
different times after the excitation is released by an emitter
located at the center of the lattice. (b) Excited-state population
Pe = |ce(t)|2 as a function of time in units of τrev. The three
dashed lines mark the times of the snapshots shown in (a). The
other parameters for theses plots are α = 1/10, Nx = Ny = 21,
U0/(�J ) = 0.1, �e/J = 0, and �g = UB/

√
α ≈ 0.4�J .

can then be understood by considering the potential shown
in Fig. 10(a), where on top of the constant electric field the
edges are modeled by a smooth confining potential Vconf,
such that

εi = −eExi + Vconf(�ri). (34)

The potential Vconf(�ri) is taken to be small and smooth
in the bulk and to grow very rapidly near the boundaries
of the lattice. This example illustrates very clearly how
the equipotential lines in this system form closed loops,
represented by straight lines in the bulk, which then con-
tinue around the edges. Therefore, these equipotential lines
explain the shape of the mode function shown in Fig. 8(b),
but also the fact that the photons propagating along the
edge re-enter the bulk region exactly at the position xe,
where they have been emitted.

In electronic systems, this guiding-center principle is
crucial to understand the quantized Hall transport and
the existence of extended states in the bulk, even in the
presence of strong disorder [54]. This latter aspect is ulti-
mately related to the nontrivial topology of the electron
wave functions [53] and is linked to the integer quantum
Hall effect through percolation theory [52]. Even though
extended states are sensitive to the boundaries and are dif-
ferent for every different realization of disorder, at least one
of them must always exist and connect one boundary to the
other. In the current setting, this last feature is exactly what
gives rise to the observed periodic photonic orbits, even
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0

quantum Hall
demultiplexer

FIG. 10. (a) Example of a photonic lattice with a smooth edge
given by a confining potential Vconf and a linear potential gradi-
ent along the x axis. The equipotential lines of the total potential
(black lines) are straight lines in the bulk, but bend into a closed
loop along the edge. The white arrow marks the direction of the
electric field in the bulk while the red arrows show an exam-
ple of a photon trajectory along the red equipotential line. (b)
Sketch of the proposed photonic demultiplexing device based on
the guiding-center photonic motion along equipotential lines.

in a finite-size lattice. It is worth noticing that this type
of physics was also recently observed in ultracold gases
experiments with rotating traps [70,71].

As another consequence of this principle and a key
difference from the E = 0 case, photons injected at the
boundary of the quantum Hall lattice can penetrate into
the bulk while following specific equipotential lines. Since
every equipotential line identifies a unique resonance fre-
quency, photons of different frequency are transported to
different regions in the bulk. More specifically, for a con-
figuration shown in Fig. 10(b), photons that are injected at
the upper-right corner of the lattice with a frequency ωin
will propagate along the edge before making a turn into
the bulk region at a position

xout = −lB
�(ωin − ωch)

UB
. (35)

Therefore, this system realizes in a natural way a
frequency-demultiplexing element for photons. By requir-
ing that the separation between the output channels
exceeds the spatial width of the Landau orbitals, i.e.,
�xout > lB, we can estimate a frequency resolution of
δω � UB/� and a total number of Nω ≈ Lx/lB frequency
components that can be spatially separated with such a
basic device.

D. Quantum state transfer: edge to edge versus bulk to
bulk

Let us now generalize the previous analysis to a multi-
ple emitter case and discuss a basic application of photonic
quantum Hall systems, namely to transfer an arbitrary
quantum superposition state between two such emitters,
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i.e., to realize the mapping

(α|g〉1 + β|e〉1)|g〉2 → |g〉1(α|g〉2 + β|e〉2). (36)

Such state-transfer processes have previously been dis-
cussed in great detail for emitters coupled to chiral waveg-
uides or to edge channels of 2D photonic lattices systems.
In this case the transfer is achieved via the emission
of a single photon and a high efficiency requires time-
dependent couplings gi=1,2(t) in order to reabsorb this
photon with close to unit probability [23]. Note that state-
transfer schemes have also been analyzed in 1D spin chains
and topological lattices [72–76], where, however, a high-
fidelity transfer again relies on very specific coupling pat-
terns or time-dependent control techniques. Compared to
those settings, the findings in the previous sections suggest
that our photonic quantum Hall systems offer an essential
advantage for state-transfer applications, by enabling an
almost perfect excitation transfer without the need for any
fine tuning or additional time-dependent control.

To support this intuition, we consider a small photonic
lattice as depicted in Fig. 11, with two emitters located
either on the edge of the lattice or in the bulk at positions
�rn

e . By assuming an initial state as in Eq. (36) the ansatz for
the full state generalizes to

|ψ〉(t) = α|g〉1|g〉2|vac〉 + β
[
e−iω1

e tc1(t)σ 1
+ + e−iω2

e tc2(t)σ 2
+

+
∑

i

ϕ(�ri, t)�†(�ri)
]
|g〉1|g〉2|vac〉, (37)

with c1(0) = 1 and c2(0) = 0. Since any deterministic
propagation phase can be reabsorbed into a local basis
rotation, we can quantify the fidelity of the state-transfer
process in terms of the excitation probability P(2)e (t) =
|c2(t)|2 and define F = maxt P(2)e (t), given that the first
emitter is initially fully excited, P(1)e (0) = 1 [22,30].

After integrating out the photonic components, we
obtain a coupled set of equations for the emitter amplitudes
[55],

ċn(t) =

−
N=2∑

m=1

gngm

4

∫ t

0
ds G(t − s, �rn

e , �rm
e )cm(s)ei(ωn

e t−ωm
e s).

(38)

Provided the emitters are spatially separated, we can
then again replace the full photonic Green’s function by
its continuum approximation in Eq. (16) and define the
local detuning of each emitter as �n = ωn

e − ωch(xn
e ). This

shows that all the considerations done above for a single
emitter, in particular the identification of the three differ-
ent coupling regimes, remain valid for multiple emitters as
well. In addition, we can numerically integrate the exact
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FIG. 11. Chiral excitation transfer in different configurations.
The left panels depict the locations of the two emitters in the lat-
tice, while the right panels show the evolution of the excited-state
populations, P(n)e (t) = |cn(t)|2. (a) Excitation transfer via edge
channels, where the two emitters are located on the edge (light
green sites) at positions �r1

e/l0 = (20, 40) and �r2
e/l0 = (20, 0).

The photon propagates along the edge from emitter 1 to emit-
ter 2. The parameters in this example are U0/(�J ) = 0, g1 =
g2 = 0.1ωB/

√
α ≈ 0.4J , and �1 = �2 = 0.1 × ωB ≈ 0.7J . (b)

Excitation transfer via the bulk, where the two emitters are
located at positions �r1

e/l0 = (20, 36) and �r2
e/l0 = (20, 5). The

photon propagates through the bulk from emitter 1 to emit-
ter 2. The parameters in this example are U0/(�J ) = 0.05,
�g1 = �g2 = UB/

√
α ≈ 0.2�J and�1 = �2 = 0. (c) Excitation

transfer between two emitters in the bulk, but with the photon
propagating along the edge from emitter 2 to emitter 1. The other
parameters are the same as in (b). In all three simulations we
assume α = 1/10 and Nx = Ny = 41.

dynamics for multiple emitters within the single-excitation
sector and use it to evaluate the excitation probabilities
P(n=1,2)

e (t) = |cn(t)|2 shown in the right panels of Fig. 11.
First of all, the simulations in Fig. 11(a) confirm that

in a conventional lattice with a synthetic magnetic field,
but no synthetic electric field, UB = 0, excitations can be
efficiently transported along the edges and even undergo
a full loop without any significant losses into the bulk
modes [21,22,25,30,32,34]. However, similar to the weak-
coupling regime discussed above, the photons emitted into
the edge channels have a spatially asymmetric wave func-
tion and, thus, are only partially reabsorbed by the second
emitter, i.e., P(2)e � 0.6 (as also observed in Ref. [32]).
Further, as illustrated in Fig. 1(c), the edge modes have
a non-negligible dispersion [36], which is responsible for
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a broadening of the wavepacket during propagation and
leads to a dependence of the transfer process on the dis-
tance between emitters. Therefore, the implementation of
high-fidelity state-transfer operations in this configuration
requires additional control over the individual couplings,
gn → gn(t), to facilitate the reabsorption process and to
compensate for propagation effects [21,22,30].

In Figs. 11(b) and 11(c) we consider an alternative setup
where a sizeable synthetic electric field UB 	= 0 is intro-
duced and the emitters are located in the bulk region of
the lattice. In the situation assumed in Fig. 11(b), where
the upper emitter is initially excited, the photon propa-
gates in a straight line through the bulk toward the second
emitter. As discussed in Sec. V A above, under critical-
coupling conditions, the photon wavepacket in this case
is highly symmetric and can be reabsorbed by the sec-
ond emitter with near-perfect fidelity (F ≈ 0.97), which
is also fully reproduced by exact numerical simulations.
To demonstrate a two-way connectivity, we also consider
the opposite situation, where the lower emitter is initially
excited. In this case, the photon must propagate along the
edge, but nevertheless we observe an almost-perfect trans-
fer of the excitation. Remarkably, the broadening effect of
the edge-mode dispersion on the photon wave function is
in fact of minor importance in this case of a symmetric
wave function.

Interestingly, in these simulations the transfer along the
edge is faster than a direct transfer through the bulk. As
already mentioned above, this can be attributed to the
much higher group velocity in the edge channel. Indeed,
the propagation time along the edges is almost negligible,
compared to the propagation time in the bulk, which allows
us to estimate the total transfer time by

τT ≈ �yPBC

cH
+ 2
�e

, (39)

where we also include the emission and absorption time
estimated by Eq. (27). Here, �yPBC is the effective dis-
tance between the emitter and the receiver under PBC, i.e.,
by simply ignoring the path along the edges. For example,
for the two configurations considered in Figs. 11(b) and
11(c), we would expect J τT ≈ 430 and J τT ≈ 175. In the
first case the agreement with the exact simulation is almost
perfect, while in the second case we have around approx-
imately 20% of error as the transfer time observed in the
simulation is around Jt ∼ 220.

While an intrinsic state-transfer fidelity of F ∼ 0.97 is
already impressive, it would not be sufficient for a quantum
computing application and one may wonder if even higher
fidelities, F → 1, can be achieved in principle. From the
parameter scan in Fig. 7 it is clear that this is not pos-
sible for the considered purely linear electric potential.
However, additional terms in the local electric field, for

example, of the form

�εi = −eExi + �ωp +
∑

s

as (xi − Xs)
s , (40)

do not change the overall physics of the transfer as we are
going to discuss in more detail in Sec. VI, but can be used
to adjust the detailed shape of the local density of states
and, therefore, the non-Markovian features.

Simple numerical scans already show that by including
s = 2 terms in this expansions, fidelities F � 0.99 can be
achieved, and a further improvement is expected from a
more systematic optimization. This must also include the
value of the magnetic flux α as an optimization parameter,
since the Landau levels of the Harper-Hofstadter lattice are
not completely flat and, even if exponentially suppressed,
residual Bloch oscillations might affect the state-transfer
fidelity. This exciting perspective goes beyond the scope
of the current analysis and will be the subject of future
research.

E. Effect of photon losses and disorder

In view of experimental demonstrations and practical
applications, it is important to assess the robustness of the
state transfer with respect to photon losses and a static
disorder. For this purpose, we extend our study of the
transfer process in Sec. V D, introducing a spatial inho-
mogeneity of the frequency of each site of the form εi =
−eExi + �ωi

p , where the offsets ωi
p are chosen randomly

and independently according to a Gaussian distribution
with mean value ωp and standard deviation σp . Then, using
the same approach as in Ref. [55], we model the effect of
photon losses with rate γp by an additional damping term
in the dynamics of the photon wavepacket,

∂tϕ(�ri, t) = . . .− γp

2
ϕ(�ri, t). (41)

This expression already shows that the effect of photon
loss introduces only an overall exponential damping of the
photon amplitude, but does not affect any of the topolog-
ical properties of the system [6]. For state-transfer appli-
cations, it reduces the final transfer fidelity, P(2)e (τT) ≈
e−γp τT P(1)e (0), which sets a condition γp � τT � τrev =
cH/Ly for the maximally tolerable loss rate.

Regarding disorder, in Fig. 12 we show the disorder-
averaged infidelity 1 − F̄ as a function of the intersite
voltage drop U0 and the strength of the lattice disorder,
σp . We see that with increasing electric field, the transfer
becomes increasingly robust with respect to local fre-
quency disorder. This can be understood from the fact that
for �σp � U0 the disorder is not able to efficiently couple
two neighboring photonic eigenstates, which are spaced
in energy by �E ∼ U0. Therefore, under this condition
the linear slope of the Landau levels is preserved along
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FIG. 12. Disorder-averaged value of the transfer infidelity 1 −
F̄ (color scale) as a function of the electric field, U0/(�J ),
and the lattice disorder strength, σp/J . The coupling strength
of the two emitters are fixed to the critical-coupling condition
�g1 = �g2 = UB/

√
α. Emitter 1 is located at �r1

e/l0 = (10, 17)
while emitter 2 is located at �r2

e/l0 = (10, 4). The other parameters
for this simulation are α = 1/10, Nx = Ny = 21, �1

e = �2
e = 0,

and γp/J = 10−5 (this reduced value of the losses is chosen
to highlight the effect of disorder). The dashed white line indi-
cates the condition �σp = U0. For each choice of parameters, the
disorder average is performed over Ndis = 100 realizations.

with all the associated transport properties. This interpre-
tation is confirmed by the simulations in Fig. 12, where
we see that the condition beyond which the quantum Hall
physics is washed out by disorder is indeed given by the
line �σp � U0.

Interestingly, the transfer fidelity F̄ starts to slowly
decrease again for larger values of U0. This effect, how-
ever, is not related to the disorder, but is rather caused by
spurious effects due to the lattice geometry and to mixing
between Landau levels whenever the electric field energy
starts to be compatible with the gap between Landau lev-
els, U0 ∼ �ωB. In the considered example, we empirically
find that values of U0 � 0.1�ωB are sufficient to suppress
such imperfections.

F. Experimental considerations

Experimental realizations of topological photonic sys-
tems are currently pursued both in the optical and in
the microwave domain. Focusing for concreteness on
the latter case, 2D photonic lattices can be fabricated
out of superconducting LC resonators with frequen-
cies of about ωp/(2π) ≈ 5 − 10 GHz, tunnel couplings
J/(2π) ≈ 100 MHz and quality factors of Q ≈ 104 − 105,
which corresponds to γp = ωp/Q ≈ 2π × 50 − 500 kHz
[25,77]. By engineering a lattice with Nx = Ny = 20 res-
onators along each side, a voltage drop of U0/J ≈ 0.1
and a magnetic flux of α = 0.1, we obtain UB/(2π�) ≈
13 MHz. Therefore, we require a coupling strength of
g/(2π) ≈ 40 MHz to reach the critical-coupling regime,
which can be readily achieved with superconducting qubits
[25,77].

For this setup we then obtain a typical transport time
of τT ∼ τrev ≈ 126 J −1, such that γpτrev ∼ 10−2 − 10−3

and the photon is able to undergo hundreds of round trips
before it decays. At the same time, the fabrication of super-
conducting resonator arrays with a frequency disorder
of σp/J ∼ 10−2 − 10−3 have already been demonstrated
[25,77–80], which means that the condition �σp < UB can
also be met. Therefore, we conclude that experimental real-
izations of such photonic quantum Hall systems are well
within experimental reach.

VI. PHOTONIC QUANTUM HALL PERCOLATION
NETWORKS

As we already discuss above, many aspects of photon
propagation in the considered quantum Hall lattice can be
understood from the fact that the photonic wavepackets
move along equipotential lines. As an immediate conse-
quence, most of the effects that we discuss so far for the
case of a constant electric field, can be generalized to
generic lattice potentials of the form

εi = V(�ri)+ �ωp , (42)

where V(�ri) describes a smooth, but otherwise arbitrary
profile of the on-site energy offsets. In particular, the
equipotential lines of V(�ri) can be curved to connect differ-
ent parts of the lattice or even intersect each other. In the
following we show how this additional tunability can be
used to realize photonic networks, in which many emitters
can be coupled through fully configurable chiral channels.

Interestingly, this idea is closely connected to the con-
cept of the quantum Hall percolation network, which was
introduced for electronic systems to obtain an intuitive
explanation of the integer quantum Hall effect [50,51]. In
these electronic setups the network of equipotential lines
is however provided by natural disorder making it impos-
sible to control and use for any technological purpose. In
contrast, the photonic implementation allows for almost
complete freedom in the design of an equipotential line,
which opens up a completely new perspective for quantum
Hall networks.

A. Configurable chiral channels

In a first step, let us generalize the concept of chi-
ral transfer channels to arbitrary potentials V(�ri), assum-
ing, however, that variations are sufficiently smooth. In
this case we can locally expand the potential around the
positions �rn

e of the emitters,

εi � �ωp + V(�rn
e)+ �∇V(�rn

e) · (�ri − �rn
e). (43)

This simply means that each emitter sees a quantum Hall
lattice with a different frequency offset and an effective
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field E ∼ �∇V(�rn). Under this assumption, the same emis-
sion and absorption dynamics discussed above is recovered
if we assume a local density of states as given in Eq. (19)
and we replace the Landau voltage by

UB �−→ ŨB(�rn
e) = |∇V(�rn

e)|lB, (44)

and the local emitter detuning by

�n �−→ �̃n(�rn
e) = ωn

e − ω̃ch(�rn
e). (45)

Here, the channel frequency has been generalized to the
(x, y) space-dependent quantity according to Eq. (17)

ωch(x) �−→ ω̃ch(�r) = ωLL
�=0 + V(�r)

�
+ ŨB(�r)2

2�2ωB
. (46)

Based on this local-field approximation, we can iden-
tify three criteria for reaching a state transfer between
two emitters located at positions �r1

e and �r2
e with similar

efficiency as in Sec. V D:

1. The two emitters are resonant and connected by
a generalized equipotential line set by the channel
frequency, ω̃ch(�r1

e) = ω̃ch(�r2
e).

2. The coupling gn of each emitter satisfies the local
critical coupling condition, gn

√
α ≈ ŨB(�rn

e)/�.
3. The local synthetic electric field is the same for both

emitters, ŨB(�r1
e) = ŨB(�r2

e).

These conditions ensure the resonant emission of a sym-
metric wavepacket, which can be reabsorbed by the second
emitter under the same critical-coupling condition. As
long as the potential does not vary too abruptly, the pho-
ton moves along the equipotential line with a local Hall
speed cH �→ c(�r) = |∇V(�r)|l2B/� proportional to the poten-
tial gradient. The third criterion specifically ensures that
the transverse width of the emitted wavepacket matches
that of a spontaneously emitted photon from the second
emitter, thus preserving the symmetry between emission
and absorption.

To illustrate and validate this working principle in terms
of a concrete example, we simulate a state transfer between
two emitters that are coupled to a photonic lattice with the
more complicated potential V(�r) shown in Fig. 13(a). For
this scenario, we compare the case where the two emit-
ters see the same local potential gradient with the case
where the gradient is different. However, in both situa-
tions the emitters are located along the same equipotential
lines and are in local resonance, �̃n = 0. We find that in
the first case, where all three conditions from above are
satisfied, the state transfer occurs with an almost-perfect
fidelity, despite a very complicated energy landscape. In
the other case, both emitters are critically coupled to the
same equipotential line, but they are located in regions
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FIG. 13. Chiral state transfer in the randomly generated poten-
tial V(�ri) shown in the two left panels. The two emitters are
located along the red equipotential line, with the initially excited
emitter 1 placed at �r1

e/l0 = (10, 19). In (a) the second emitter is
located at a position �r2

e/l0 = (10, 1) with the same local gradi-
ent. In this case, a perfect transfer of the excitation is possible
(right panel). In (b) the second emitter is located at �r2

e/l0 = (9, 9)
in a region with a different local electric field. In this situation,
the transfer probability is strongly reduced. Other parameters
for these plots are α = 1/10, Nx = Ny = 21, U0/(�J ) = 0.1,
�g1 = g2 = UB/

√
α ≈ �J , and �̃1 = �̃2 = 0.

with different field gradients. Therefore, they are resonant
with different channel frequencies ω̃ch(�r1

e) 	= ω̃ch(�r2
e). In

this way the absorption cannot be maximized and remains
always around the approximately 60% value.

B. Beam splitters

In our discussion above we implicitly assume that the
spatial variations of the applied potential are sufficiently
smooth and that equipotential lines never cross. In this case
the whole lattice separates into a set of disjoint 1D chan-
nels. In order to achieve higher degrees of connectivity
and nonlocal operations, we can violate those assumptions
in order to realize beam splitter elements that coherently
couple different channels. This is an essential element for
any photonic network and is also at the core of quantum
computational schemes with linear optics [81,82], pro-
vided that one can tune each network element to produce
the desired output. Beam-splitter interactions also play a
major role in the discussion regarding the so-called quan-
tum Hall extended states [52–54] and in the percolation
random network description of the quantum Hall effect
[50,51]. Here, disorder-induced crossings of equipotential
lines or the tunneling between neighbor equipotential lines
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give rise to effective nodes with multiple input and output
channels, however, with random transmission amplitude.
In contrast, in the current synthetic quantum Hall sys-
tem, the same processes can be implemented under fully
controlled conditions.

As a proof of principle, we illustrate the implementa-
tion of a 50:50 beam splitter that preserves the shape of the
incoming wavepacket. In this way input and output pho-
tons can be critically emitted or absorbed for high-fidelity
state-transfer applications. As illustrated in Fig. 14(a), such
a beam splitter can be obtained at a crossing point of dif-
ferent equipotential lines, which exist, for example, for a
potential that is locally of the form

V(�r) = eE(|x − X0| − |y − Y0|), (47)

centered in �R0 = (X0, Y0). In the three plots in Fig. 14(b),
we plot the propagation of a photonic wavepacket, which
is emitted along the diagonal equipotential line in the
north-east direction towards the crossing point at �r = 0.
This photon is then coherently split into two symmetric
wavepackets, which propagate into opposite north-west
and south-east directions. Thanks to the chirality, this pro-
cess occurs without any backscattering and, furthermore,
preserves the symmetric shape of the outgoing wavepack-
ets. Therefore, the ability of being fully reabsorbed by
other emitters is not degraded by this operation. This pro-
vides a great flexibility for realizing a variety of connec-
tivity patterns in such percolation networks, in particular
when beam splitters are implemented with reconfigurable
potentials.

Note that for electronic systems, a closely related split-
ting mechanism has been previously analyzed for quadratic
saddle-point potentials, V(�r) ∼ x2 − y2 [83,84]. However,
in this case curvature effects are always relevant [85],
making the dynamics more complicated and less con-
trolled than for the linear saddle potential given in Eq.
(47). Specifically, we have numerically observed that the
quadratic saddle point does not preserve the symmetry of
the photon wavepacket. Moreover, away from the contact
point, our linear saddle-point potential has the same gra-
dient in all four branches marked by the white arrows in
Fig. 14(a), which ensures the conditions for high-fidelity
state-transfer operations. This once more highlights the
intriguing new possibilities offered by highly tunable pho-
tonic platforms, where the potential configurations can be
engineered in an optimal way.

VII. CONCLUSIONS

In summary, we introduce a new chiral quantum optics
platform based on two-level emitters coupled to the bulk of
a 2D photonic lattice subject to crossed synthetic magnetic
and electric fields. The presence of the combined synthetic
fields forces photons to propagate unidirectionally along
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FIG. 14. (a) Sketch of the lattice potential V(x, y) =
eE(|x − X0| − |y − Y0|) for the realization of a chiral beam
splitter. The white arrows indicate the propagation direction
along the specific equipotential line connected to an emitter
located at �re/l0 = (6, 6). (b) Snapshots of the photon density
|ϕ(�r, t)|2 for a photon that is emitted in the critical-coupling
regime. The parameters for this simulation are α = 1/10,
Nx = Ny = 31, U0/(�J ) = 0.1, �e = 0, and �g = U(�re)/

√
α,

X0/l0 = Y0/l0 = 15.

an effective waveguide orthogonal to the electric field.
The lateral position of the selected effective waveguide is
controlled by the resonance frequency of the emitter.

Depending on the strength of the emitter-light coupling,
we identified and characterized three different regimes
of light-matter interactions: weak coupling (Markovian),
strong coupling (non-Markovian), and critical coupling
(non-Markovian). The Markovian weak-coupling regime
corresponds to the usual light-matter coupling regime con-
sidered in the chiral quantum optics literature, and all
existing results for generic chiral setups directly extend
to our system. In contrast, the strong-coupling and, even
more, the critical-coupling regimes display radically new
properties that stem from the frequency-dependent density
of states: the strong-coupling regime supports atom-photon
bound states in a chiral continuum, which do not exist
in standard setups. In the critical-coupling regime, the
emission process displays strongly non-Markovian fea-
tures due to the interplay between light-matter interactions
and quantum Hall physics.

The ensuing temporal symmetry of the emitted photon
wave function can then be exploited to implement state-
transfer protocols between two emitters with a fidelity
that largely exceeds standard chiral quantum optics con-
figurations, already without any fine-tuned couplings or
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time-dependent optimal control schemes. Provided that
conventional pulse control strategies can still be added to
correct for any of the residual absorption errors, this result
can be also optimized by only adding corrections to the
local synthetic electric field potential beyond the linear
term. This second way to improve the state transfer in the
critical regime relies only on the reshaping of the photonic
local density of states, fully exploiting the non-Markovian
nature of the light-matter interactions in this quantum Hall
setting. It thus also sets the basis to develop a new powerful
mechanism to realize optimal state transfer by engineering
the local density of states of a propagating chiral channel,
for which this quantum Hall setup could give the basics
intuition.

For generic, nonuniform synthetic electric field config-
urations, we related the photon propagation to the fun-
damental property of the quantum Hall current to flow
along the equipotential lines of the single-particle poten-
tial according to the guiding-center motion. This can be
used as a starting point for implementing new photonic
devices, including frequency-(de)-multiplexing elements,
chiral waveguides with arbitrary paths within the 2D lat-
tice, and beams splitters.

Based on these analytic and numerical findings, we
argue that all these elements can be combined to realize
a full-fledged chiral quantum optical network completely
based on the quantum Hall effect for light. On the one hand,
such networks are of interest for technological applica-
tions, where quantum communication schemes discussed
previously for 1D chiral quantum optical networks can
now be extended to 2D emitter arrays and improved by the
intrinsic non-Markovian dynamics of light-matter interac-
tions in this system. On the other hand, this system is also
of a purely fundamental interest, providing a new plat-
form that extends the edge modes’ dynamics to the bulk
and where concepts, for instance, related to the so-called
bulk-edge correspondence or the quantum Hall percolation
theory can be further explored and expanded [6,51]. Fur-
thermore, adding nonlinear quantum emitters to synthetic
photonic quantum Hall systems offers completely new pos-
sibilities to access and probe the physics of the fractional
quantum Hall effect and its chiral edge dynamics [16,86].
Also in this context, the basic physical processes analyzed
in this work will be relevant for developing schemes to pre-
pare and measure strongly correlated quantum many-body
states in this system.

ACKNOWLEDGMENTS

We are grateful to Alberto Nardin, Giuseppe Calajò,
and Alexander Szameit for fruitful discussions. This work
is supported by the Provincia Autonoma di Trento, by
the Q@TN initiative, and by the PNRR MUR project
PE0000023-NQSTI. P.R. acknowledges support from the

European Union’s Horizon 2020 research and innova-
tion programme under Grant Agreement No. 899354
(SuperQuLAN). This research is part of the Munich Quan-
tum Valley, which is supported by the Bavarian state
government with funds from the Hightech Agenda Bayern
Plus.

APPENDIX: LANDAU PHOTONS IN ELECTRIC
FIELDS

The mode functions of the lattice in the continuous limit
are the solution of the Schrödinger equation [55]

[
p2

x

2m
+ (py + eBx)2

2m
− eEx

]
��k(�r) = (ω − ωb)��k(�r),

(A1)

where px/y = −i�∂x/y , ωb = ωp − J/2, and m = 1/(2Jl20).
By making the ansatz �k(�r) = φ(x) exp(iky)/

√
Ly and

completing the square we arrive at
[

p2
x

2m
+ �ωB

2

(
x
lB

+ lBk − UB

�ωB

)2
]
φ(x) = (ω − ωH )φ(x),

(A2)

where ωH = cH k − U2
B/(2�ωB). The eigenfrequencies are

then given by

ω�k = �ωB

(
�+ 1

2

)
+ UB

(
lBk − UB

2�ωB

)
, (A3)

while the eigenstates are just the displaced harmonic oscil-
lator wave functions

��k(�r) = exp(iky)√
Ly

ϕh.o.
�

(
x + l2Bk − UB/(�ωB)lB

)
. (A4)

Here

ϕh.o.
� (x) = 1√

2��!
√
π

H�(x/lB)e−x2/(4l2B), (A5)

and H�(x) is the �th Hermite polynomial.
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