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Optimal control theory is a powerful mathematical tool, which has known a rapid development since
the 1950s, mainly for engineering applications. More recently, it has become a widely used method to
improve process performance in quantum technologies by means of highly efficient control of quantum
dynamics. This tutorial aims at providing an introduction to key concepts of optimal control theory that is
accessible to physicists and engineers working in quantum control or in related fields. The different math-
ematical results are introduced intuitively, before being rigorously stated. This tutorial describes modern
aspects of optimal control theory, with a particular focus on the Pontryagin maximum principle, which is
the main tool for determining open-loop control laws without experimental feedback. The different steps
to solve an optimal control problem are discussed, before moving on to more advanced topics such as
the existence of optimal solutions or the definition of the different types of extremals, namely normal,
abnormal, and singular. The tutorial covers various quantum control issues and describes their mathemat-
ical formulation suitable for optimal control. The connection between the Pontryagin maximum principle
and gradient-based optimization algorithms used for high-dimensional quantum systems is described. The
optimal solution of different low-dimensional quantum systems is presented in detail, illustrating how the
mathematical tools are applied in a practical way.
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I. INTRODUCTION

Quantum technology aims at developing practical appli-
cations based on properties of quantum mechanics [1].
This objective requires precise manipulation of quantum
objects by means of external electromagnetic fields. Quan-
tum control encompasses a set of techniques to find the
time evolution of control parameters that perform specific
tasks in quantum physics [2–19]. In recent years, it has
naturally become a key tool in the emergent field of quan-
tum technologies [1,2,20], with applications ranging from
quantum computing [2,21,22] to quantum sensing [23] and
quantum simulation [24,25].

In the majority of quantum control protocols, the con-
trol law is computed in an open-loop configuration without
experimental feedback. In this context, a powerful tool is
optimal control theory (OCT) [2] that allows a given pro-
cess to be carried out, while minimizing a cost (e.g., the
control time). This approach has key advantages. Its flexi-
bility makes it possible to adapt to experimental constraints
or limitations and its optimal character leads to the phys-
ical limits of the driven dynamics. OCT can be viewed
as a generalization of the classical calculus of variations
for problems with dynamical constraints [26]. Its modern
version was born with the Pontryagin maximum principle
(PMP) in the late 1950s [27]. Since the pioneering study
of Pontryagin and coworkers, OCT has undergone rapid
development and is nowadays a recognized field of math-
ematical research. Recent tools from differential geometry
have been applied to control theory, making these methods
very effective in dealing with problems of growing com-
plexity. Many reference textbooks have been published on
the subject, both on mathematical results and engineering
applications [26,28–36]. Originally inspired by problems
of space dynamics, OCT was then applied in a wide spec-
trum of applications such as robotics or economics. OCT
was first used for quantum processes [37,38] in the context
of physical chemistry, the goals being to steer chemical
reactions [4,39–42] or to control spin dynamics in nuclear
magnetic resonance [43–46]. A lot of results have recently
been established for quantum technologies, such as, for
example, the minimum duration to generate high-fidelity
quantum gates [2].

Two types of approach based on the PMP have been
used to solve optimal control problems in low- and high-
dimensional systems, respectively. In the first situation,
called geometric optimal control theory, the equations for
optimality are solved by using geometric and analytical
tools. The results can be determined analytically or at least
with a very high numerical precision. The PMP allows

one to deduce the structure of the optimal solutions and,
in some cases, a proof of their global optimality can be
established. In this context, a series of low-dimensional
quantum control problems has been rigorously solved in
recent years for both closed [47–56] and open quantum
systems [57–64]. Specific numerical optimization algo-
rithms have been developed and applied to design control
fields in larger quantum systems [25,45,65–67]. Because
of the complexity of the control landscape, only local opti-
mal solutions are found with this numerical optimal control
approach.

However, despite the recent success of quantum optimal
control theory, the situation is still not completely satisfac-
tory. The difficulty of the concepts used in this field does
not allow a nonexpert to easily understand and apply these
techniques. The mathematical textbooks use a specialized
and sophisticated language, which makes these works dif-
ficult to access. Very few basic papers for physicists are
available in the literature, while having a minimum grasp
of these tools will be an important skill in the future of
quantum technologies. The purpose of this tutorial is to
provide an introduction to the core mathematical concepts
and tools of OCT in a rigorous but understandable way by
physicists and engineers working in quantum control and
in related fields. A deep analogy can be carried out between
OCT and finding the minima of a real function of several
variables. This parallel is used throughout the text to quali-
tatively describe the key aspects of the PMP. The tutorial is
based on an advanced course for PhD students in physics
taught at Saarland University in Spring of 2019. It assumes
a basic knowledge of standard topics in quantum physics,
but also of mathematical techniques such as linear algebra
or differential calculus and geometry. Finally, we hope that
this paper will give the reader the prerequisites to access
a more specialized literature and to apply optimal control
techniques to their own control problems.

A. Structure of the paper

A tutorial about optimal control is a difficult task
because a large number of mathematical results have been
obtained and many techniques have been developed over
the years for specific applications. Among others, we
can distinguish the following problem classes: finite- or
infinite-dimensional systems, open- or closed-loop con-
trol, linear or nonlinear dynamical systems, geometric or
numerical optimal control, the PMP or Hamilton-Jacobi-
Bellmann (HJB) approach, etc. We briefly recall that the
HJB method, which is the result of the dynamic program-
ming theory, leads to necessary and sufficient conditions
for optimality in which the optimal cost is the solution
of a nonlinear partial differential equation [26]. Unfortu-
nately, this equation is generally very difficult to solve
numerically.
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This means making choices about which topics to
include in this paper. We have deliberately selected spe-
cific aspects of OCT that are treated rigorously, while
others are only briefly mentioned. The choice fell on basic
mathematical concepts that are the most useful in quan-
tum control. We limit our focus to the optimal control of
an open-loop finite-dimensional system by using the PMP.
In particular, we consider only analytical and geometric
techniques to solve low-dimensional control problems. To
ensure overall consistency and limit the length of the paper,
we do not discuss in depth numerical optimization meth-
ods and the infinite-dimensional case [68,69], which are
also key issues in quantum control. In order to connect this
tutorial with the current applications of optimal control to
high-dimensional quantum systems, we describe the link
between the PMP and the most current implementation
of the gradient-based optimization algorithm (the GRAPE
algorithm [45]). Finally, we stress that a precise knowledge
of the PMP is an essential skill for numerical optimization,
and that the scope of the material of this paper is much
broader than the examples presented.

The paper is built on three reading levels. A first level
corresponds to the main text and explains the main con-
cepts necessary to describe and apply the theory of optimal
control. Some key ideas in optimal control are first intro-
duced qualitatively for a simple quantum system in Sec.
II. In addition to the two examples solved in Secs. VIII
and IX, the different notions are described rigorously and
then systematically illustrated by examples. This estab-
lishes a direct link between the mathematical concept
and its practical application. A second reading level is
given by footnotes, which recall a mathematical definition
or correspond to a more specific comment that can be
skipped on a first reading. A final reading level is avail-
able in the appendices. These different paragraphs explain
in detail the mathematical origin of the theorems used for
the controllability and the existence problem and some
standard counterexamples or specificities the reader should
have in mind. We point out that these sections are not
mathematical proofs of theorems, but rather a descrip-
tion of the formalism introduced in a language accessible
to a physicist. In order to facilitate the reading of the
paper, a list of the main notation used is given in Sec.
XII along with the place in the text where they are first
introduced.

Although the paper is targeted to a physics audience
and the mathematical details are kept as simple as pos-
sible, our objective is to stick to rigorous statements and
claims, since this aspect becomes crucial while implement-
ing optimal control ideas in numerical simulations or in
experiments.

The paper is organized as follows. We first introduce
the main ideas used in optimal control in the case of a
simple quantum system in Sec. II. We then show how to
formulate an optimal control problem from a mathematical

point of view in Sec. III. Closed and open quantum systems
illustrate this discussion. The different steps to solve such
a problem are presented in Sec. IV by using the analogy
with finding a minimum of a function of several vari-
ables. The tutorial continues with a point that is crucial, but
often overlooked in quantum control studies, namely the
existence of optimal solutions. We present in Sec. V some
results based on the Filippov test, which is one of the most
important techniques to address this question. The first-
order conditions are described in Sec. VI, with specific
attention given to the different types of extremals and the
statement of the PMP. The connection between the PMP
and gradient-based optimization algorithms is described in
Sec. VII. Sections VIII and IX are dedicated to the pre-
sentation of two examples in three- and two-level quantum
systems, respectively. Recent advances in the application
of OCT to quantum technologies are briefly described in
Sec. X, where we mention some of the current directions
that are being followed for the development of these tech-
niques. A conclusion is given in Sec. XI. Mathematical
details about the controllability and existence problems are
respectively postponed to Appendices A and B.

II. INTRODUCTION TO THE OPTIMAL
CONTROL CONCEPTS: THE CASE OF A

TWO-LEVEL QUANTUM SYSTEM

In quantum control, a general problem is to prepare a
given quantum state by means of a specific time-dependent
electromagnetic pulse. This leads to some questions such
as which states can be achieved or which shape of control
is required to realize this objective. These aspects, which
are addressed rigorously in the rest of the tutorial, are first
introduced qualitatively in this section.

To this end, we consider the control driving a two-
level quantum system from the ground to the excited state.
The system is described by a wave function ψ(t) whose
dynamics is governed by the Schrödinger equation

iψ̇ =
(

E0 �(t)
�∗(t) E1

)
ψ ,

where units such that � = 1 have been chosen. The param-
eters E0 and E1 respectively denote the energies of the
ground and excited states, while �(t) corresponds (up to
a multiplicative factor) to a complex external field whose
real and imaginary parts are, e.g., the components of two
orthogonal linearly polarized laser fields. We consider res-
onant fields for which the carrier frequency ω of the laser
is equal to the energy difference E1 − E0, namely,

�(t) = u(t)ei(E1−E0)t,

where the amplitude u(t) represents the control and is
assumed to be real. We now apply a time-dependent

030203-3



BOSCAIN, SIGALOTTI, and SUGNY PRX QUANTUM 2, 030203 (2021)

change of variables corresponding to the choice of a rotat-
ing frame. The time evolution of ψ̃ = ϒ−1ψ , with ϒ =
diag(e−iE0t, e−iE1t), satisfies the differential equation

i ˙̃
ψ =

(
0 u(t)

u(t) 0

)
ψ̃ .

We denote by c1 = x1 + iy1 and c2 = x2 + iy2 the two
complex coordinates of ψ̃ in a basis of the Hilbert space
C2, where the indices 1 and 2 respectively correspond to
the ground and excited states. Since ψ is a state of norm
1 and ϒ a unitary operator, we deduce that x2

1 + y2
1 + x2

2 +
y2

2 = 1. Starting from the state x1 = 1, the goal of the con-
trol is to bring the system to a target for which x2

2 + y2
2 = 1.

The Schrödinger equation is equivalent to the following set
of equations for the coefficients xk and yk:

ẋ1 = uy2, ẏ1 = −ux2,

ẋ2 = uy1, ẏ2 = −ux1.

Since u is a real control, we immediately see that the first
and last equations are coupled to each other and decoupled
from the two others. In other words, the initial state of the
dynamics is only connected to states for which y1 = x2 =
0, i.e., such that x2

1 + y2
2 = 1. The system thus evolves on a

circle. For our control objective, the only interesting states
therefore correspond to y2 = ±1. It is also straightforward
to verify that such target states can be reached at least with
a constant control u. In control theory, this formulation of
the control problem and the analysis of the reachable set
from the initial state constitute a basic prerequisite before
deriving a specific control procedure. This step is detailed
in Sec. III.

We now explore the optimal control of this system. We
first use the circular geometry of the dynamics to sim-
plify the corresponding equations. We introduce the angle
θ such that x1 = cos θ and y2 = sin θ , with θ(0) = 1. We
arrive at

θ̇ = −u(t),

where the target state is here defined as θfi = ±π/2. By
symmetry, we can fix, without loss of generality, θfi =
−π/2. Many control solutions u exist to reach this state
and a specific protocol can be selected by minimizing at
the same time a functional of the state of the system and
of the control, called a cost. Here, an example is given by
the control time. To summarize this example, the goal of
the optimal control procedure is then to find the control
u steering the system to the target state in minimum time.
Consider first constant controls u(t) = u0 with u0 ∈ R. The
duration of the process is thus T = π/2u0. This solution
reveals a key problem in optimal control that corresponds
to the existence of a minimum. In this example, arbitrar-
ily fast controls can be achieved by considering larger and

larger amplitudes u0 and an optimal trajectory minimiz-
ing the transfer time does not exist. The analysis of the
existence of optimal solutions that is a building block of
any rigorous description of an optimal control problem is
discussed in Sec. V. It can be shown with the results pre-
sented in Sec. V that an optimal solution exists if the set of
available controls is restricted to a bounded interval, e.g.,
u(t) ∈ [−um, um], where um is the maximum amplitude. In
this case, the optimal pulse is the control of maximum
amplitude, the minimum time being equal to π/2um.

In order to illustrate the method of solving an opti-
mal control problem, we consider the same transfer but
in a fixed time T, the goal being to minimize the energy
associated with the control, i.e., the term

∫ T
0 u(t)2dt/2.

There is no additional constraint on the control and we
have u(t) ∈ R. The target state is reached if

∫ T
0 u(t)dt =

π/2. Introducing the Lagrange multiplier λ ∈ R, this con-
strained optimization problem can be transformed into the
minimization of the functional

J =
∫ T

0

(
u(t)2

2
+ λu(t)

)
dt − λ

π

2
.

If we denote by H the function H = −u2/2 − λu, the
Euler-Lagrange principle leads to ∂H/∂u = 0, i.e., u(t) =
−λ. Using the constraint on the dynamics, we finally arrive
at the optimal control u(t) = π/2T.

In this simple example, the optimal solution can be
derived without the complete machinery of the Pontrya-
gin maximum principle presented below. However, in the
example we have introduced the main tools used in the
PMP, such as the Lagrange multiplier, the Pontryagin
Hamiltonian H , and the maximization condition ∂H/∂u =
0. A few comments are in order here. The dynamical con-
straint is quite simple since the dimension of the state space
is the same as the number of controls, the dynamics can
be exactly integrated, and the set of controls satisfying the
constraint

∫ T
0 u(t)dt = π/2 is regular. This is not the case

for a general nonlinear control system for which (1) the
Lagrange multiplier (which is not usually constant but a
function of time) is not easily found, and (2) abnormal
Lagrange multipliers appear if the set of controls satisfy-
ing the constraint is not regular. We observe that H can be
rewritten as

H = λθ̇ − u2

2
,

which corresponds to the general formulation of the Pon-
tryagin Hamiltonian in the normal case. The maximization
condition remains the same in a general setting if there is
no constraint on the available control. These aspects are
discussed in detail in Sec. VI.
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III. FORMULATION OF THE CONTROL
PROBLEM

The dynamics. A finite-dimensional control system is a
dynamical system governed by an equation of the form

q̇(t) = f [q(t), u(t)], (1)

where q : I → M represents the state of the system, I
is an interval in R, and M is a smooth manifold whose
dimension is denoted by n [70]. We recall that a manifold
is a space that locally (but possibly not globally) looks
like Rn. Manifolds appear naturally in quantum control
to describe, for instance, the (2N − 1)-dimensional sphere
S2N−1, which is the set of wave functions of a N -level
quantum system. The control law is u : I → U ⊂ Rm and
f is a smooth function such that f (·, ū) is a vector field
on M for every ū ∈ U. An example of a set U of possible
values of u(t) is given by U = [−1, 1]m, meaning that the
size of each of the coordinates of u is at most one. The set
U can be the entire Rm if there is no control constraint.

To be sure that Eq. (1) is well posed from a mathemati-
cal viewpoint, we consider the case in which I = [0, T] for
some T > 0 and u belongs to a space of regular enough
functions U called the class of admissible controls (see
Ref. [71] for a precise definition). Piecewise continuous
controls form a subset of admissible controls, and in exper-
imental implementations in quantum control they are the
only control laws that can be reasonably applied. How-
ever, the class of piecewise constant controls is not suited
to prove existence of optimal controls [72].

Given an admissible control u(·) and an initial condi-
tion q(0) = qin ∈ M , there exists a unique solution q(·) of
Eq. (1), defined at least for small times [73]. A continu-
ous curve q(·) for which there exists an admissible control
u(·) such that Eq. (1) is satisfied is said to be an admissible
trajectory.

Let us present some typical situations encountered in
quantum control.

Consider the time evolution of the wave function of
a closed N -level quantum system. In this case, under
the dipolar approximation [10,74,75], the dynamics is
governed by the Schrödinger equation (in units where
� = 1)

iψ̇(t) =
(

H0 +
m∑

j =1

uj (t)Hj

)
ψ(t), (2)

where ψ , the wave function, belongs to the unit sphere in
CN and H0, . . . , Hm are N × N Hermitian matrices. The
control parameters uj (t) ∈ R are the components of the
control u(·). This control problem has the form (1) with
n = 2N − 1, M = S2N−1 ⊂ CN , q = ψ , and f (ψ , u) =
−i(H0 + ∑m

j uj Hj )ψ . Note that the uncontrolled part cor-
responding to the H0 term is called the drift. The solution

of the Schrödinger equation can also be expressed in terms
of the unitary operator U(t, t0), which connects the wave
function at time t0 to its value at t: ψ(t) = U(t, t0)ψ(t0).
The propagator U(t, t0) also satisfies the Schrödinger
equation

iU̇(t, t0) =
(

H0 +
m∑

j =1

uj (t)Hj

)
U(t, t0) (3)

with initial condition U(t0, t0) = IN . In quantum comput-
ing, the control problem is generally defined with respect
to the propagator U. Equation (3) has the form (1) with
M = U(N ) ⊂ CN×N and q = U.

The wave function formalism is well adapted to describe
pure states of isolated quantum systems, but when one
lacks information about the system, the correct formalism
is that of mixed-state quantum systems. The state of the
system is then described by a density operator ρ, which
is a N × N positive semidefinite Hermitian matrix of unit
trace. For a closed quantum system, the density operator is
a solution of the von Neumann equation

ρ̇(t) = −i[H , ρ(t)]

with H = H0 + ∑m
j =1 uj (t)Hj . For an open N -level quan-

tum system interacting with its environment, the dynamics
of ρ is governed in some cases [76,77] by the following
first-order differential equation, called the Kossakowski-
Lindblad equation [78,79]:

ρ̇(t) = −i[H , ρ(t)] + L[ρ(t)]. (4)

This equation differs from the von Neumann one in that a
dissipation operator L acting on the set of density opera-
tors has been added. This linear operator that describes the
interaction with the environment cannot be chosen arbitrar-
ily. Its expression can be derived from physical arguments
based on a Markovian regime and a small coupling with
the environment [77,80]. From a mathematical point of
view, the problem of finding dynamical generators for open
systems that ensure complete positivity of the dynamical
evolution was solved in finite- and infinite-dimensional
Hilbert spaces [78,79]. The operator L is a linear oper-
ator acting on the space of density matrices that can be
expressed for a N -level quantum system as

L[ρ(t)] = 1
2

N 2−1∑
k,k′=1

akk′([Vkρ(t), V†
k′] + [Vk, ρ(t)V†

k′]),

where the matrices V1, . . . , VN 2−1 are trace zero and
orthonormal. The linear mapping L is completely positive
if and only if the matrix a = (akk′)N

2−1
k,k′=1 is positive [81,82].

The density operator ρ can be represented as a vector �ρ by
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stacking its columns. The corresponding time evolution is
generated by superoperators in the Schrödinger-like form

i �̇ρ = H �ρ. (5)

Equation (5) has the form (1) with M = BN 2−1 ⊂ RN 2−1,
q = �ρ, and f : �ρ �→ H �ρ. Here BN 2−1 denotes the ball of
radius 1 in RN 2−1 [83].

The initial and final states. When considering a quan-
tum control problem, the goal in most situations is not to
bring the system from an initial state qin to a final state qfi,
but rather to reach at time T a smooth submanifold T of M
(see Ref. [84] for a precise definition), called the target:

q(0) = qin, q(T) ∈ T . (6)

This issue arises, for instance, in the population transfer
from a state ψin to an eigenstate ψfi of the field-free Hamil-
tonian H0. In this case, since the phase of the final state
is not physically relevant, T is characterized by {eiθψfi |
θ ∈ [0, 2π ]}. It can also happen that the initial condition
q(0) = qin is generalized to q(0) ∈ S , where S is a smooth
submanifold of M . However, for the sake of presentation,
we will not treat this case here, the changes to be made
to the method being straightforward. Finally, note that the
time T can be fixed or free, such as, for instance, in a
time-minimum control problem.

The optimal control problem. Two different optimal
control approaches can be used to steer the system from
qin to a target T .

• Approach A: prove that the target T is reachable from
qin (in time T if the final time is fixed or in any time other-
wise) and then find the best possible control realizing the
transfer. This approach requires to solve the preliminary
step of controllability. Essentially, we need to show that

T ∩ R(qin) 
= ∅ if T is free,

where R(qin) := {q̄ ∈ M | ∃ T and an admissible

trajectory q : [0, T] → M such

that q(0) = qin, q(T) = q̄}

or that

T ∩ RT(qin) 
= ∅ if T is fixed,

where RT(qin) := {q̄ ∈ M | ∃ an admissible trajectory

q : [0, T] → M such that

q(0) = qin, q(T) = q̄},

and then solve the minimization problem

∫ T

0
f 0[q(t), u(t)]dt → min, (7)

where f 0 : M × U → R is a smooth function, which in
many quantum control applications depends only on the
control. An example is given by the functional

∫ T
0 u2(t)dt

that represents the energy used in the control process.
The control time T is fixed or free. This integral is gen-
erally called the cost functional. A schematic illustration
of the reachable set RT(qin) and the target T is given
in Fig. 1.

The test of controllability is sometimes easy (as, for
instance, for low-dimensional closed quantum systems
[85,86]) and sometimes more difficult. We recall that a
closed quantum system is controllable if the matrix Lie
algebra generated by the matrices H0, . . . , Hm is su(N ).
For general systems, a useful sufficient condition for
controllability is described in Appendix A. When the
test of controllability can be performed, this approach is
to be preferred since it permits reaching the final state
exactly.

• Approach B: find a control that brings the system as
close as possible to the target, while minimizing the cost.
This approach is used for systems for which the controlla-
bility step cannot be easily verified. In this case, the initial
point is fixed and the final point is free, but the cost con-
tains a term [denoted d(·, ·) in the next formula] depending
on the distance between the final state of the dynamics and
the target:

∫ T

0
f 0[q(t), u(t)]dt + d[T , q(T)] → min (8)

with T fixed or free.

FIG. 1. The reachable set RT(qin) from qin at different times T
(the shades of gray indicate an increase of the control time) and
the target T (red area). The manifold M is R2 and the coordinates
of q are (q1, q2). The intersection between the two sets RT(qin)

and T is nonempty for a long enough time T. Note that the initial
point of the dynamics does not belong to the reachable set at time
T. This is due to a specific choice of the dynamical system with
a drift.
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TABLE I. Summary of the different optimal control
approaches.

Approach A q̇(t) = f [q(t), u(t)]
When controllability
can be verified, i.e.,
one can prove that

q(0) = qin, q(T) ∈ T

T ∩ R(qin) 
= ∅ if T
is free or

∫ T
0 f 0[q(t), u(t)] dt → min

T ∩ RT(qin) 
= ∅ if T
is fixed

T fixed or free

Approach B q̇(t) = f [q(t), u(t)]
When controllability
cannot be verified

q(0) = qin, q(T) free

∫ T
0 f 0[q(t), u(t)] dt + d[T , q(T)] → min

T fixed or free

Example 1. An example is given by open quantum sys-
tems governed by the Kossakowski-Lindblad equation, for
which the characterization of the reachable set is quite
involved [87,88]. If we denote by ρfi the target state, a cost
functional to minimize penalizing the energy of the control
and the distance to the target can be

∫ T

0

m∑
j =1

uj (t)2

2
dt + ‖ρ(T)− ρfi‖2,

where ‖ · ‖ is the norm corresponding to the scalar product
of density matrices 〈ρ1|ρ2〉 = Tr[ρ†

1ρ2].

The optimization problems in these two approaches
should of course be considered together with the dynam-
ics (1) and the initial and final conditions. They are
summarized in Table I.

IV. THE DIFFERENT STEPS TO SOLVE AN
OPTIMAL CONTROL PROBLEM

The steps to determine a solution to minimization prob-
lems (7) and (8) are similar to finding the minimum of a
smooth function f 0 : R → R.

1. Find conditions that guarantee the existence of
solutions. We recall that among smooth functions
f 0 : R → R, it is easy to find examples not admit-
ting a minimum (e.g., the function x �→ e−x and the
function x �→ x do not have minima). This step is
crucial. If it is skipped, first-order conditions may
give a wrong candidate for optimality (see below
for details) and numerical optimization schemes
may either not converge or converge towards a

solution that is not a minimum. For optimal con-
trol problems, there exist several existence tests, but
they are not always applicable or easy to use. In Sec.
V, we present the Filippov test.

2. Apply first-order necessary conditions. For a
smooth function f 0 : R → R, this means that
if x̄ is a minimum then df 0(x̄)/dx = 0. This con-
dition gives candidates for minima, i.e., identifies
local minima, local maxima, and saddles. Note that
if one does not verify a priori existence of min-
ima, first-order conditions could give wrong can-
didates. Think, for instance, of the function x �→
(x2 + 1/2)e−x2

. This function has a single local min-
imum, obtained at x = 0, whose value is 1/2, which
is well identified by first-order conditions. However,
its infimum is zero (for x → ±∞, the function tends
to zero). For optimal control problems, first-order
necessary conditions should be given in an infinite-
dimensional space (a space of curves) and they are
expressed by the PMP, which is presented in Sec.
VI B. In Approach A, note that the condition that
the system exactly reaches the target is a constraint
leading to the appearance of Lagrange multipliers
(normal and abnormal). This point is discussed in
detail in Sec. VI A.

3. Apply second-order conditions. For instance, for a
smooth function f 0 : R → R, among the points at
which we have df 0(x̄)/dx = 0, a necessary condi-
tion to have a minimum is d2f 0(x̄)/dx2 ≥ 0. This
step is generally used to further reduce the can-
didates for optimality. For optimal control prob-
lems, there are several second-order conditions,
such as higher-order Pontryagin maximum prin-
ciples or Legendre-Clebsch conditions (see, for
instance, Refs. [28,31,32]). In some cases, this step
is difficult and it could be more convenient to go
directly to the next one.

4. Selection of the best solution among all candi-
dates. Among the set of candidates for optimality
identified in step 1 and (possibly) further reduced in
step 2, one should select the best one. This step is
often done by hand if the previous steps have identi-
fied a finite number of candidates for optimality. For
optimal control problems, one often ends up with
infinitely many candidates for optimality and this
step is generally very difficult.

There are of course specific examples for which the solu-
tion is particularly simple. This is the case for convex
problems for which only first-order conditions should
be applied, since the existence step is automatic and
first-order conditions are both necessary and suffi-
cient for optimality. This situation is however rare in
quantum control and we will not discuss it
further.
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V. EXISTENCE OF SOLUTIONS FOR THE
OPTIMAL CONTROL PROBLEM: THE FILIPPOV

TEST

The existence theory for optimal control is difficult and,
unfortunately, there is no general procedure that can be
applied in any situation. In this section, we present the
most important technique, the Filippov test that allows one
to tackle several types of problem. In order to keep this
paragraph as accessible as possible, we present below only
the main ideas and some propositions derived from the Fil-
ippov test. These results can be directly applied to quantum
systems. A complete statement of the Filippov test is pro-
vided in Appendix B. We emphasize that it is fundamental
to verify the existence of optimal controls before applying
first-order conditions (i.e., the PMP). Otherwise, as dis-
cussed in the finite-dimensional case, it may occur that the
PMP has solutions, but none of them are optimal.

Let us consider the problem in Approach A with T fixed.
Problem P1. We have

q̇(t) = f [q(t), u(t)],

q(0) = qin, q(T) ∈ T ,∫ T

0
f 0[q(t), u(t)] dt → min,

T > 0 fixed.

Here q : [0, T] → M, where M is a smooth n-dimensional
manifold, f , f 0 are smooth functions of their arguments,
u ∈ U , U ⊂ Rm, and T is a smooth submanifold of M.

In order to tackle the existence problem, we define a new
variable q0 obtained as the value of the cost during the time
evolution, that is,

q0(t) =
∫ t

0
f 0[q(s), u(s)]ds,

and we let q̂ = (q0, q). The dynamics of the new state q̂ in
R × M is given by

˙̂q(t) =
(

q̇0(t)
q̇(t)

)
=

(
f 0[q(t), u(t)]
f [q(t), u(t)]

)
=: f̂ [q(t), u(t)],

q̂(0) = (0, qin), q̂(T) ∈ R × T .

This control system is called the augmented sys-
tem. The minimization problem in integral form,
min

∫ T
0 f 0[q(t), u(t)] dt, becomes a problem of minimiza-

tion of one of the coordinates at the final time, i.e.,
min q0(T).

We denote by R̂T(0, qin) the reachable set at time T
starting from (0, qin) for the augmented system. The key
observation on which optimal control is based is expressed
by the following proposition.

Optimal trajectory

Nonoptimal trajectory

FIG. 2. The reachable set of the augmented system (area
delimited by the red curve). The target T is represented by the
vertical dashed line.

Proposition 1. If q(·) is an optimal trajectory for Problem
P1 then q̂(T) ∈ ∂R̂T(0, qin).

Proof. By contradiction, if q̂(T) = [q0(T), q(T)] ∈ intR̂T

(0, qin) then there exists a trajectory reaching a point
[α, q(T)] with α < q0(T), i.e., arriving at the same point
in M , but with a smaller cost. See Fig. 2. �

When R̂T(0, qin) ∩ (R × T ) is nonempty and compact,
an optimal trajectory for Problem P1 exists [89]. We
deduce the following property.

Proposition 2. If R̂T(0, qin) is compact, T is closed,
and R̂T(0, qin) ∩ (R × T ) is nonempty, then there exists
a solution to Problem P1.

Hence, the compactness of R̂T(0, qin) is a key point. A
similar reasoning allows one to relate the compactness of
the reachable set within time T and the existence of solu-
tions for the minimum time problem. A sufficient condition
for compactness of the reachable set is given by Filippov’s
theorem, which is stated in Appendix B. A consequence of
Filippov’s theorem is the following (see also Propositions
11 and 12 in Appendix B).

Proposition 3. Consider the Schrödinger equation

iψ̇(t) =
(

H0 +
m∑

j =1

uj (t)Hj

)
ψ(t), (9)

where ψ(t) evolves in the unit sphere S2N−1 of CN , the
matrices H0, . . . , Hm are N × N Hermitian, and u(t) ∈ U.
Let ψ0 be the initial condition for ψ(·), and let the final
target T be closed. Assume that the set U is convex and
compact. Then each of the following two optimal control
problems admit a solution:
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1. T is fixed, RT(qin) intersects T , and the cost func-
tion f 0 : S2N−1 × U → R is convex;

2. minimum time problem when R(qin) intersects T .

Example 2. The compactness of U is a key assumption to
ensure the existence of an optimal solution. We come back
to the example of Sec. II and we consider the control of
a two-level quantum system whose dynamics is governed
by the Hamiltonian H = u

(
0 1
1 0

)
with u real valued [50].

The goal of the control is to steer the wave function from
ψin = (1, 0) to the target T = {(0, eiθ ) | θ ∈ R} in mini-
mum time. If U = R then there is no optimal solution since
the target state can be reached in an arbitrary small time,
while the control cannot be realized in a zero time. When
U = (−1, 1), the transfer can be achieved in a time larger
than π/2, but not exactly in time T = π/2. It is only in the
case where U is compact, e.g., U = [−1, 1], that an opti-
mal solution exists. For the constraint |u(t)| ≤ 1, we find a
pulse that allows us to bring the population from one level
to another in a time T = π/2.

We show in Secs. VIII and IX how to use these results
in two standard quantum control examples.

VI. FIRST-ORDER CONDITIONS

For a smooth real-valued function of one variable
f 0 : R → R, first-order optimality conditions are obtained
from the observation that, at points where df 0/dx 
= 0,
the function f 0, which is well approximated by its first-
order Taylor series, cannot be optimal since it behaves
locally as a nonconstant affine function. In this way, one
obtains the necessary condition: if x̄ is minimal for f 0 then
df 0(x̄)/dx = 0. First-order conditions in optimal control
are derived in the same way. We have to require that, for
a small control variation, there is no cost variation at first
order.

More precisely, if J [u(·)] is the value of the cost
for a reference admissible control u(·) [for instance,
J [u(·)] = ∫ T

0 f 0[q(t), u(t)]dt in Approach A or J [u(·)] =∫ T
0 f 0[q(t), u(t)]dt + d[T , q(T)] in Approach B], and v(·)

is another admissible control, one would like to consider a
condition of the form

∂J [u(·)+ hv(·)]
∂h

∣∣∣∣
h=0

= 0. (10)

But difficulties may arise for the following reasons.
We work in an infinite-dimensional space (the space of

controls) and hence condition (10) should be required for
infinitely many v(·). It may very well happen that if u(·)
and v(·) are admissible controls then u(·)+ hv(·) is not
admissible for every h close to 0. Think, for instance, of the
case in which m = 1 and U = [a, b]. If u(t) ≡ b is the ref-
erence control then u(t)+ hv(t) is not admissible for any
nonzero perturbation v(·) when hv(t) is strictly positive.

Hence, one should be very careful in choosing the admis-
sible variations in order to fulfill the control restrictions. In
Approach A, one should only restrict to control variations
for which the corresponding trajectory reaches the target.
More precisely, if q̃(·) is the trajectory corresponding to the
control ũ(·) := u(·)+ hv(·), one should add the condition

q̃(T) ∈ T (11)

with T either free or constrained to be the fixed final time
depending on the problem under study. Condition (11)
should be considered as a constraint for the minimization
problem, which results in the use of Lagrange multipliers
(normal and abnormal).

The occurrence of Lagrange multipliers in optimal con-
trol is therefore not due to the fact that the optimization
takes place in an infinite-dimensional space, but is rather
a general feature of constrained minimization problems, as
explained in Sec. VI A.

A. Why Lagrange multipliers appear in constrained
optimization problems

We first recall how to find the minimum of a function of
n variables f 0(x), where x = (x1, . . . , xn), under the con-
straint f (x) = 0, with the method of Lagrange multipliers.
Here f 0 and f are two smooth functions Rn → R. We
have two cases.

Case 1. If x̄ is a point such that f (x̄) = 0 with ∇f (x̄) 
=
0 then the implicit function theorem guarantees that {x |
f (x) = 0} is a smooth hypersurface in a neighborhood of
x̄. In this case, a necessary condition for f 0 to have a
minimum at x̄ is that the level set of f 0 (i.e., the set on
which f 0 takes a constant value) is not transversal to the
set {x | f (x) = 0} at x̄. See Fig. 3.

More precisely, this means that

∃λ ∈ R such that ∇f 0(x̄) = λ∇f (x̄). (12)

This statement can be proved by assuming, for instance,
that ∂xn f (x̄) 
= 0. The set {x | f (x) = 0} can then be
expressed locally around x̄ as xn = g(x1, . . . , xn−1). The
requirements that

∂xi f [x1, . . . , xn−1, g(x1, . . . , xn−1)] ≡ 0,

i = 1, . . . , n − 1,

∂xi f
0[x1, . . . , xn−1, g(x1, . . . , xn−1)]|x=x̄ = 0,

i = 1, . . . , n − 1,

immediately provide condition (12) with λ = ∂xn f 0(x̄)/
∂xn f (x̄).

Note that λ could be equal to zero. This case corresponds
to the situation in which f 0 has a critical point at x̄ even in
the absence of the constraint.
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FIG. 3. Intersection of the set f (x) = 0 (solid line) with the
level set of f 0 (dashed line). The two gradients ∇f (x) and
∇f 0(x) are parallel at x = x̄.

Case 2. If x̄ is a point such that f (x̄) = 0 with ∇f (x̄) =
0 then the set {x | f (x) = 0} could be very complicated in
a neighborhood of x̄ (typical examples are a single point,
two crossing curves, . . . , but it could be any closed set).
In general, the value of f 0 at these points cannot be com-
pared with neighboring points by requiring that a certain
derivative is zero [think, for instance, of the case in which
{x | f (x) = 0} is an isolated point]. However, they are can-
didates to optimality. As an illustrative example, consider
the case where n = 2, f 0(x1, x2) = x2

1 + (x2 − 1/4)2, and
f (x1, x2) = (x2

1 + x2
2)(x

2
1 + x2

2 − 1). The point x̄ = (0, 0) is
an isolated point for which f (x̄) = 0 and ∇f (x̄) = 0.

These results can be rewritten in the following form.

Theorem 4 (Lagrange multiplier rule in Rn). Let f 0 and
f be two smooth functions from Rn to R. If f 0 has a
minimum at x̄ on the set {x | f (x) = 0} then there exists
(λ̄, λ̄0) ∈ R2 \ {(0, 0)} such that, setting �(x, λ, λ0) =
λf (x)+ λ0f 0(x), we have

∇x�(x̄, λ̄, λ̄0) = 0, ∇λ�(x̄, λ̄, λ̄0) = 0. (13)

To show that this statement is equivalent to what we just
discussed, we observe that the second equality in Eq. (13)
gives the constraint f (x̄) = 0. For the first equation, we
have two cases. If λ̄0 
= 0 then we can normalize λ̄0 = −1
and we get λ̄∇xf (x̄)− ∇xf 0(x̄) = 0, i.e., Eq. (12) with the
change of notation λ → λ̄. If λ̄0 = 0 then λ̄ 
= 0 and we
get ∇xf (x̄) = 0, that is, the second case studied above.

The quantities λ̄ and λ̄0 are respectively called the
Lagrange multiplier and abnormal Lagrange multiplier. If
(x̄, λ̄0, λ̄) is a solution of Eq. (13) with λ̄0 
= 0 (respectively
λ̄0 = 0) then x̄ is called a normal extremal (respectively
abnormal extremal). An abnormal extremal is a candidate
for optimality and occurs, in particular, when we cannot
guarantee (at first order) that the set {x | f (x) = 0} is a
smooth curve. Abnormal extremals are candidates for opti-
mality regardless of cost f 0. Note that if x̄ is such that
∇xf (x̄) = 0 and ∇xf 0(x̄) = 0 then x̄ is both normal and
abnormal. This is the case in which x̄ satisfies the first-
order condition for optimality even without the constraint,
but we cannot guarantee that the constraint is a smooth
curve.

In the (infinite-dimensional) case of an optimal con-
trol problem, normal and abnormal Lagrange multipliers
appear in a very similar way.

B. Statement of the Pontryagin maximum principle

In this section, we state the first-order necessary condi-
tions for optimal control problems, namely the PMP. The
basic idea is to define a new object [the pre-Hamiltonian;
see Eq. (14) below] that allows us to formulate the
Lagrange multiplier conditions in a simple and direct way.

The theorem is stated in a more general form that uni-
fies and slightly generalizes the optimal control problems
of Approaches A and B. In particular, we add to the
cost

∫ T
0 f 0[q(t), u(t)]dt a general terminal cost φ[q(T)]. In

Approach A, we have φ = 0, while in Approach B, φ rep-
resents the distance from q(T) to the target T . We allow the
target T to coincide with M . This corresponds to leaving
the final point q(T) free in Approach B.

Theorem 5. Consider the optimal control problem

q̇(t) = f [q(t), u(t)],

q(0) = qin, q(T) ∈ T ,∫ T

0
f 0[q(t), u(t)]dt + φ[q(T)] → min,

where

• M is a smooth manifold of dimension n, U ⊂ Rm,
• T is a (nonempty) smooth submanifold of M; it can be

reduced to a point (fixed terminal point) or coincide
with M (free terminal point),

• f , f 0 are smooth,
• u ∈ U ,
• q : [0, T] → M is a continuous curve [73].

Define the function (called the pre-Hamiltonian)

H(q, p , u, p0) = 〈p , f (q, u)〉 + p0f 0(q, u) (14)
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with
(q, p , u, p0) ∈ T∗M × U × R

(see Ref. [70] for a precise definition of T∗M).
If the pair (q, u) : [0, T] → M × U is optimal then there

exists a never vanishing continuous pair (p , p0) : [0, T] �
t �→ [p(t), p0] ∈ T∗

q(t)M × R, where p0 ≤ 0 is a constant,
such that, for almost every (a.e.) t ∈ [0, T], we have

(i) q satisfies the Hamiltonian equation q̇(t) = ∂H
∂p

[q(t), p(t), u(t), p0];
(ii) p satisfies the Hamiltonian equation ṗ(t) = − ∂H

∂q

[q(t), p(t), u(t), p0];
(iii) the quantity HM [q(t), p(t), p0] := maxv∈U

H[q(t), p(t), v, p0] is well defined and

H[q(t), p(t), u(t), p0] = HM [q(t), p(t), p0],

which corresponds to the maximization condition.

Moreover,

(iv) there exists a constant c ≥ 0 such that HM [q(t),
p(t), p0] = c on [0, T], with c = 0 if the final time
is free (value of the Hamiltonian);

(v) for every v ∈ Tq(T)T , we have 〈p(T), v〉 = p0

〈dφ[q(T)], v〉 (transversality condition), where dφ is
the differential of the function φ.

Some comments are in order.
• A proof of the PMP can be found in, for instance, Refs.

[27,28]. An intuitive derivation based on the Lagrange
multiplier rule is presented in Sec. VII A for the case in
which T is fixed, the final point is free, and U = Rm.

• The covector p is called the adjoint state in the control
theory literature [70], while p0 is the abnormal multiplier.
The quantities p(·) and p0 play the roles of Lagrange mul-
tipliers for the constrained optimization problem. We point
out the similarity between the expressions of H and of
� in Theorem 4 (with the change of notation q → x and
p → λ).

• A trajectory q(·) for which there exist p(·), u(·),
and p0 such that [q(·), p(·), u(·), p0] satisfies all the con-
ditions given by the PMP is called an extremal trajectory
and the 4-uple [q(·), p(·), u(·), p0] an extremal or, equiva-
lently, an extremal lift of q(·). Such an extremal is called
normal if p0 
= 0 and abnormal if p0 = 0. It may hap-
pen that an extremal trajectory q(·) admits both a normal
extremal lift [q(·), p1(·), u(·), p0] and an abnormal one
[q(·), p2(·), u(·), 0]. In this case, we say that the extremal
trajectory q(·) is a nonstrict abnormal trajectory. Note that
(as in the finite-dimensional case) abnormal trajectories
are candidates for optimality regardless of the cost. In the
finite-dimensional case, they correspond to singularities of
the constraint function, while here they correspond to sin-
gularities of the functional that maps the control v(·) to the

final point at time T of the solution of q̇(t) = f [q(t), v(t)],
q(0) = qin. It is worth noting that abnormal extremals do
not only appear in pathological cases, but they are often
present in real-world applications, such as, for instance, in
the two examples presented in Secs. VIII and IX.

• The PMP is only a necessary condition for optimality.
It may very well happen that an extremal trajectory is not
optimal. The PMP can therefore provide several candidates
for optimality, only some of which are optimal (or even
none of them if the step of existence has not been verified;
see Sec. V).

• Since the equation for p(·) in Theorem 5(ii) is lin-
ear, if [q(·), p(·), u(·), p0] is an extremal then, for every
α > 0, [q(·),αp(·), u(·),αp0] is an extremal as well. As
a consequence, some useful normalizations are possible.
A typical normalization for normal extremals is to require
that p0 = − 1

2 , but other choices are also possible.
• When there is no final cost (φ = 0), the transversality

condition (v) of Theorem 5 simplifies to

〈p(T), Tq(T)T 〉 = 0. (15)

When the final point is fixed (T = {qfi}), Tq(T)T is a zero-
dimensional manifold and, hence, condition (15) is empty.
When the final point is free (T = M ), the transversal-
ity condition simplifies to p(T) = p0dφ[q(T)]. In local
coordinates, we recover that p(T) is proportional to the
gradient of φ evaluated at the point q(T). Note that, since
[p(T), p0] 
= 0, in this case one necessarily has p0 
= 0.

Table II gives a list of the possible extremal solutions of
the PMP.

Example 3. As a general example in quantum control, we
consider a dynamical system governed by Eq. (2) where
the goal is to minimize at the fixed final time T the cost
−|〈ψfi|ψ(T)〉|2 + 1

2

∫ T
0

∑m
j =1 u2

j (t)dt, where ψfi is a target
state towards which we want to drive the system (up to a
global phase) [90]. A direct application of the PMP shows

TABLE II. List of the possible extremal solutions of the PMP.

Name Definition

Extremal 4-uple [q(·), p(·), u(·), p0]
solution of the PMP

Normal extremal Extremal with p0 
= 0
Abnormal extremal Extremal with p0 = 0
Nonstrict abnormal

trajectory
Trajectory which admits both

abnormal and normal lifts
Regular control When the maximization

condition of the PMP gives
u = ω(q, p)

Singular control When the control is not regular
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that the pre-Hamiltonian H can be expressed as

H(ψ ,χ , uj , p0) = Re(〈χ |ψ̇〉)+ p0

2

∑
j

u2
j ,

where the adjoint state, denoted here by χ , is an abstract
wave function that can be chosen so that it belongs to
the unit sphere in CN , 〈χ |χ〉 = 1. Since ψ and χ are
complex-valued functions, the pre-Hamiltonian is defined
through the real part of the scalar product between χ and
ψ̇ . The standard definition used in Theorem 5 can be found
by introducing the real and imaginary parts of the wave
functions. Using Eq. (2), we deduce that

H(ψ ,χ , uj , p0) = Im
(

〈χ |H0 +
∑

j

uj Hj |ψ〉
)

+ p0

2

∑
j

u2
j , (16)

which leads to

iχ̇ (t) =
(

H0 +
m∑

j =1

uj (t)Hj

)
χ(t),

i.e., χ also satisfies the Schrödinger equation. We stress
that this condition is only true in the bilinear case. A spe-
cific equation has to be computed for other dynamics, such
as, e.g., the Gross-Pitaevskii equation [91]. The final con-
dition χ(T) is given by the transversality condition (v) of
the PMP:

χ(T) = p0〈ψfi|ψ(T)〉ψfi. (17)

The maximization condition of the PMP leads to the
constraints

∂H
∂uj

(ψ ,χ , uj , p0) = 0

for j = 1, . . . , m. A direct computation from Eq. (16) gives

Im(〈χ |Hj |ψ〉)+ p0uj = 0.

For the normal extremal with p0 = −1, we finally get

uj = Im(〈χ |Hj |ψ〉). (18)

C. Use of the PMP

The application of the PMP is not so straightforward.
Indeed, there are many conditions to satisfy and all of them
are coupled. This section is aimed at describing how to use
it in practice.

The following points should be followed first for nor-
mal extremals (p0 < 0) and then for abnormal extremals

(p0 = 0). In the first case, p0 can be normalized to −1/2
since p0 is defined up to a multiplicative positive factor. In
the different steps, several difficulties (that are briefly men-
tioned) may arise. Most of them should be solved case by
case, since they can be of different nature depending on the
problem under study.

Step 1. Use maximization condition (iii) of Theorem 5
to express, when possible, the control as a function of the
state and of the covector, i.e., u = w(q, p). Note that if
we have m controls (e.g., if U is an open subset of Rm)
then the first-order maximality conditions give m equations
for m unknowns. When the maximization condition per-
mits expressing u as a function of q and p , we say that
the control is regular; otherwise, the control is said to be
singular. We may have regions where the control is regu-
lar and regions where it is singular. For singular controls,
finer techniques have to be used to derive the expression
of the control. These different points are discussed in the
examples in Secs. VIII and IX.

Step 2. Insert the control found in the previous step into
the Hamiltonian equations (i) and (ii) of Theorem 5:

q̇(t) = ∂H
∂p

{q(t), p(t), w[q(t), p(t)], p0},

ṗ(t) = −∂H
∂q

{q(t), p(t), w[q(t), p(t)], p0}.
(19)

In the case where the previous step provides a smooth
w(·, ·), this is a well-defined set of 2n equations for 2n
unknowns. Note, however, that the boundary conditions
are given in a nonstandard form since we know q(0) but not
p(0). Instead of p(0), we have partial information on q(T)
and p(T) depending on the dimension of T [see the next
step to understand how these final conditions are shared
between q(T) and p(T)]. We then solve Eq. (19) for fixed
q(0) = qin and any p(0) = pin ∈ T∗

qin
M . Let us denote the

solution as

q(t; pin, p0), p(t; pin, p0).

We stress that, when w(·, ·) is not regular enough, solutions
to the Cauchy problem (19) with q(0) = qin and p(0) = pin
may fail to exist or be unique.

Step 3. Find pin such that

q(T; pin, p0) ∈ T . (20)

Note that if T is reduced to a point and T is fixed, we get n
equations for n unknowns (the components of pin). If T is
free then an additional equation is needed. This condition
is given by relation (iv) in the PMP. If T is a k-dimensional
submanifold of M (k ≤ n) then Eq. (20) provides only
n − k equations and the remaining ones correspond to the
transversality condition (v) of the PMP.
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Step 4. If Eq. (20) [together with the transversality con-
dition and condition (iv) of the PMP if T is free] has a
unique solution pin and if we have verified a priori the
existence step, then the optimal control problem is solved.
Unfortunately, in general, there is no reason for Eq. (20)
to provide a unique solution. Indeed, the PMP is only a
necessary condition for optimality. If several solutions are
found, one should choose the best among them by a direct
comparison of the value of the cost. This is, in general, a
nontrivial step, complicated by the difficulty of explicitly
solving Eq. (20). For this reason, several techniques have
been developed to select the extremals. Among others, we
mention the sufficient conditions for optimality given by
Hamilton-Jacobi-Bellman theory and synthesis theory. We
refer the reader to Ref. [92] for a discussion. In Example 1
(Sec. VIII) we are able to select the optimal solution with-
out the use of sufficient conditions for optimality, while
this is not the case in Example 2 (Sec. IX).

Example 4. We come back to the case of Example 3. We
have shown with Eq. (18) that the maximization condition
allows us to express the m controls uj as functions ofψ and
χ in the normal case. This situation therefore corresponds
to step 1 above where the control is regular. For abnormal
extremals for which p0 = 0, we get

Im(〈χ |Hj |ψ〉) = 0, (21)

and the control is singular because this relation does not
directly give the expression for uj .

Applying step 2, we obtain in the regular situation the
following coupled equations for ψ and χ :

iψ̇ =
[

H0 +
∑

j

Im(〈χ |Hj |ψ〉)Hj

]
ψ ,

iχ̇ =
[

H0 +
∑

j

Im(〈χ |Hj |ψ〉)Hj

]
χ ,

(22)

with the boundary conditions ψ(0) = ψin and Eq. (17). In
step 3, we then solve Eq. (22) to find the initial condi-
tion χ(0) such that the final state χ(T) satisfies Eq. (17)
at time T.

The numerical procedures used to select the initial con-
dition χ(0), called shooting methods in control theory, are
based on suitable adaptations of the Newton algorithm
[35,36]. Step 4 consists finally in comparing the cost of
the different solutions found in step 3.

In the abnormal case, we use the fact that Eq. (21) is
satisfied in a nonzero time interval, so the time derivatives
of Im(〈χ |Hj |ψ〉) are also zero. The first time derivative
leads to the m relations

m∑
j =1

uj Re(〈χ |[Hk, Hj ]|ψ〉) = Re(〈χ |[H0, Hk]|ψ〉)

with k = 1, . . . , m. This linear system can be expressed in
a more compact form as

Ru = s,

where R is a m × m matrix with elements Rkj =
Re(〈χ |[Hk, Hj ]|ψ〉) and s a vector of coordinates sk =
Re(〈χ |[H0, Hk]|ψ〉). We deduce that the control u is given
as a function of ψ and χ as u = R−1s. If this system is sin-
gular then the second time derivative has to be used. This
is the case, e.g., for m = 1, when a further constraint has
to be fulfilled, namely, Re(〈χ |[H0, H1]|ψ〉) = 0. From the
derivation of u, we then apply steps 2 and 3 to the abnormal
extremals.

VII. GRADIENT-BASED OPTIMIZATION
ALGORITHM

The aim of this section is to introduce a first-order
gradient-based optimization algorithm based on the PMP.
We first derive the necessary conditions of the PMP in the
case of a fixed control time without any constraint on the
final state and on the control. This construction is known
in control theory as the weak PMP. Note that we consider
only the case of regular control. Iterative algorithms can
be deduced from these conditions. In a second step, we
apply this idea to quantum control and we show how a
gradient-based optimization algorithm, GRAPE [45], can
be designed from this approach.

A. The weak Pontryagin maximum principle

We consider a control system whose dynamics is gov-
erned by Eq. (1), when the final state is free and the
control is unconstrained. The objective is to solve a con-
trol problem in the Approach B, as defined in Sec. III with
a fixed control time T. We recall that the cost functional to
minimize can be expressed as

J [u(·)] =
∫ T

0
f 0[q(t), u(t)]dt + d[T , q(T)].

Considering the evolution equation (1) as a dynamical
constraint (in infinite dimension), in order to apply (for-
mally) the Lagrange multiplier rule for normal extremals,
we introduce the functional

�[p(·), u(·)] = d[T , q(T)] +
∫ T

0
f 0[q(t), u(t)]dt

+
∫ T

0
〈p(t), q̇(t)− f [q(t), u(t)]〉dt. (23)
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We stress that the Lagrange multiplier p(·) is here a
function on [0, T]. Integrating Eq. (23) by parts, we obtain

�[p(·), u(·)] = d[T , q(T)] + 〈p(T), q(T)〉
− 〈p(0), q(0)〉

−
∫ T

0
{H [q(t), p(t), u(t)] + 〈ṗ(t), q(t)〉}dt

with

H(q, p , u) = 〈p , f (q, u)〉 − f 0(q, u). (24)

Note that the scalar function H has the same expression
(with p0 = −1) as the pre-Hamiltonian H introduced in
Sec. VI B for the statement of the PMP. Since there is no
constraint on the control law, i.e., u(t) ∈ Rm for any time t,
we consider the variation δ� in � at first order due to the
variation δu of u. This change of control induces a varia-
tion of the trajectory δq(t) with δq(0) = 0, the initial point
being fixed. Note that the adjoint state p is not modified.
We arrive at

δ� =
〈
∂d(T , q)
∂q

∣∣∣∣
q=q(T)

+ p(T), δq(T)
〉

−
∫ T

0

[〈
∂H
∂q

+ ṗ , δq
〉
+ ∂H
∂u
δu

]
dt. (25)

A necessary condition for � to be an extremum is δ� =
0 for any variation δu. A solution is given by taking an
adjoint state p satisfying

ṗ = −∂H
∂q

, (26)

the final boundary condition

p(T) = −∂d(T , q)
∂q

∣∣∣∣
q=q(T)

, (27)

and requiring that

∂H
∂u

= 0 on [0, T].

As could be expected, we find here a weak version of
the equations of the PMP introduced in Sec. VI B where
the maximization of the pre-Hamiltonian is replaced by an
extremum condition given by the partial derivative with
respect to u. We point out that this approach works if the
set U is open.

B. Gradient-based optimization algorithm

The set of nonlinear coupled differential equations can
be solved numerically by an iterative algorithm. The basic
idea used in such algorithms can be formulated as follows.
Assume that a control u(·) sufficiently close to the optimal
solution is known. If p(·) satisfies Eqs. (26) and (27) then
we deduce from Eq. (25) that

δ� = −
∫ T

0

∂H
∂u
δudt.

This suggests that a better control can be achieved with
the choice δu = ε∂H/∂u, where ε is a small positive
parameter. The iterative algorithm is then described by the
following steps.

(1) Choose a guess control u(·).
(2) Propagate forward the state of the system q from

q̇ = f (q, u), with the initial condition q(0) = q0.
(3) Propagate backward the adjoint state of the system

from ṗ = −∂H/∂q, with the final condition p(T) =
−∂d(T , q)/∂q|q=q(T).

(4) Compute the correction δu to the control law,
δu(t) = ε∂H/∂u, where ε > 0 is a small parameter.

(5) Define the new control u �→ u + δu.
(6) Go to step (2) and repeat until a given accuracy is

reached.

This algorithm is an example of a first-order gradient-
based optimization algorithm. By construction, it con-
verges towards an extremal control of J that is not, in
general, a global minimum solution of the control prob-
lem, only a local one. Note that several numerical details
are hidden in the description of this method. Among oth-
ers, we mention the choice of the guess control that allows
one to reach a good local solution and the determination
of the parameter ε. The latter must be sufficiently small to
remain in the first-order approximation, but large enough
to reduce the number of iterations and therefore the com-
putational time. We refer the reader to standard numerical
optimization textbooks to address these issues [36].

This approach can be directly applied to quantum sys-
tems. The bilinearity of quantum dynamics allows us to
simplify the different terms used in the algorithm. We con-
sider a quantum system whose dynamics is governed by
the Schrödinger equation

iψ̇(t) = [H0 + u(t)H1]ψ(t).

The goal of the control process is to bring the system from
ψin towards ψfi in a fixed time T. The control problem aims
at minimizing the cost

J = 1
2

∫ T

0
u(t)2dt − |〈ψfi|ψ(T)〉|2.
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In the normal case, the pre-Hamiltonian H can be
expressed as

H = Re[〈χ |ψ̇〉] − u2

2
= Im[〈χ |H0 + uH1|ψ〉] − u2

2
,

where the wave function χ is the adjoint state of the
system. We thus deduce that the gradient on which the
iterative algorithm is based is given by

∂H
∂u

= Im[〈χ |H1|ψ〉] − u(t). (28)

We find with Eq. (28) the standard control correction used
in the GRAPE algorithm in quantum control [45].

VIII. EXAMPLE 1: A THREE-LEVEL QUANTUM
SYSTEM WITH COMPLEX CONTROLS

In this section, we mainly use the results of Ref. [50]; see
also Refs. [49,93,94]. Note, however, that original results
concerning the selection of the best extremal among all the
possible solutions are presented.

A. Formulation of the quantum control problem

We consider a three-level quantum system whose
dynamics is governed by the Schrödinger equation. The
system is described by a pure state ψ(t) belonging to a
three-dimensional complex Hilbert space. The system is
characterized, in the absence of external fields, by three
energy levels, E1, E2, and E3, and is controlled by the
pump and Stokes pulses that respectively couple states one
and two and states two and three [95]. Note that there is
no direct coupling between levels one and three. The time
evolution of ψ(t) is given by

iψ̇(t) = H(t)ψ(t),

where

H(t) =
⎛
⎝ E1 �1(t) 0
�∗

1(t) E2 �2(t)
0 �∗

2(t) E3

⎞
⎠ .

Here �1(t),�2(t) ∈ C are the two time-dependent com-
plex control parameters. We denote by ψ1(t), ψ2(t),
and ψ3(t) the coordinates of ψ(t), that is, ψ(t) =
[ψ1(t),ψ2(t),ψ3(t)]. They satisfy

|ψ1(t)|2 + |ψ2(t)|2 + |ψ3(t)|2 = 1,

leading to M = S5, a manifold of real dimension 5. The
goal of the control process is to transfer the population
from the first eigenstate to the third one in a fixed time
T. In other words, the aim is to find a trajectory in M going

from the submanifold |ψ1|2 = 1 to that with |ψ3|2 = 1.
The system is completely controllable thanks to point 2
of Proposition 9 below and Approach A can be chosen.
The optimal control problem is defined through the cost
functional

C =
∫ T

0
[|�1(t)|2 + |�2(t)|2]dt

to be minimized. The cost C can be interpreted as the
energy of the control laws used in the control process.
We consider the specific case in which the control param-
eters are in resonance with the energy transition. More
precisely, we assume that the pulses �1(t) and �2(t) can
be expressed as

�1(t) = u1(t)ei(E2−E1)t,

�2(t) = u2(t)ei(E3−E2)t,

with u1(t), u2(t) ∈ R to be optimized. Note that this
assumption is not restrictive since it can be shown that
the resonant case corresponds to the optimal solution
[50,93]. The uncontrolled part, called the drift, together
with the imaginary unit in the Schrödinger equation, can
be eliminated through a unitary transformation Y(t) given
by

Y(t) = diag(e−iE1t, e−i(E2t+π/2), e−i(E3t+π)).

Defining a new wave function x such that ψ(t) = Y(t)x(t),
we find that x(t) solves the Schrödinger equation

iẋ(t) = H ′(t)x(t),

where H ′ = Y−1HY − iY−1Ẏ. Since Y only modifies the
phases of the coordinates, ψ(t) and x(t) correspond to the
same population distribution, i.e., setting x = (x1, x2, x3)

we have |xj (t)|2 = |ψj (t)|2, j = 1, 2, 3.
Computing explicitly H ′ we arrive at

⎛
⎝ẋ1

ẋ2
ẋ3

⎞
⎠ =

⎛
⎝ 0 −u1(t) 0

u1(t) 0 −u2(t)
0 u2(t) 0

⎞
⎠

⎛
⎝x1

x2
x3

⎞
⎠ . (29)

Without loss of generality, the optimal control problem
can be restricted to the submanifold S2 ⊂ M defined
by {(x1, x2, x3) ∈ R3 | x2

1 + x2
2 + x2

3 = 1}. This statement is
trivial if the initial condition belongs to S2 [i.e., if x(0) is
real]. Otherwise, a straightforward change of phase of the
coordinates ψk allows one to come back to this condition.

030203-15



BOSCAIN, SIGALOTTI, and SUGNY PRX QUANTUM 2, 030203 (2021)

Equation (29) can be expressed in a more compact form as

ẋ = u1(t)F1(x)+ u2(t)F2(x), (30)

where

F1(x) =
⎛
⎝−x2

x1
0

⎞
⎠ , F2(x) =

⎛
⎝ 0

−x3
x2

⎞
⎠ .

Note that F1 and F2 are two vector fields defined on the
sphere S2 respectively representing a rotation along the x3
axis and along the x1 axis. Since �1(t) and �2(t) differ
from u1(t) and u2(t) only in phase factors, the minimization
problem becomes

C =
∫ T

0
[u1(t)2 + u2(t)2]dt → min (31)

with T fixed. Concerning initial and final conditions, since
the goal is to go from the submanifold |ψ1|2 = 1 to the sub-
manifold |ψ3|2 = 1, we can assume without loss of gener-
ality that x(0) = (1, 0, 0) (again, a straightforward change
of coordinates allows one to come back to this condition
otherwise). Since we are now restricted to real variables,
the target is T = {(0, 0, +1), (0, 0, −1)}. Now, as the target
is made of two points only, one should separately compute
the optimal trajectories going from (1, 0, 0) to (0, 0, 1) and
those going from (1, 0, 0) to (0, 0, −1). Finally, between all
these trajectories, one should take those having the small-
est cost. Because of the symmetries of the system, the two
families of optimal trajectories have precisely the same
cost (this will be clear in the explicit computations later
on). As a consequence, without loss of generality, we can
fix the final condition as x(T) = (0, 0, 1).

Problem (30)–(31) with fixed initial and final conditions
is actually a celebrated problem in OCT called the Grushin
model on the sphere [49,96,97].

B. Existence

For convenience, let us rewrite the optimal control
problem as follows.

Problem PGrushin(T). We have

ẋ = u1(t)F1(x)+ u2(t)F2(x),∫ T

0
[u1(t)2 + u2(t)2]dt → min, T fixed,

x(0) = (1, 0, 0), x(T) = (0, 0, 1),

u1, u2 ∈ U , U = R.

To prove the existence of solutions to PGrushin(T), one could
be tempted to use Propositions 3 and 11. However, u1 and
u2 take values in R and, hence, the second hypothesis of
the proposition is not verified.

Instead, we are going to use the following fact.

Proposition 6. If u1(t), u2(t) are optimal controls for
PGrushin(T) then u1(t)2 + u2(t)2 is almost everywhere
constant and positive on [0, T]. Moreover, for every
α > 0, αu1(αt) and αu2(αt) are optimal controls for
PGrushin(T/α).

To prove this proposition, we first state a general lemma
for driftless systems.

Lemma 7. Consider a control system of the form ẋ =∑m
j =1 uj (t)Fj (x), where x ∈ M and uj ∈ U , j = 1, . . . , m.

Then any admissible trajectory x(·) defined on [0, T] and
corresponding to controls uj (·), j = 1, . . . , m, is a repa-
rameterization of an admissible trajectory x̄(·) defined
on the same time interval whose controls ūj (·) satisfy

a.e.
√∑m

j =1 ūj (t)2 = L/T, where L = ∫ T
0

√∑m
j =1 uj (t)2dt.

Alternatively, x(·) is a reparameterization of a trajec-
tory x̄(·) defined on [0, L] whose controls satisfy a.e.√∑m

j =1 ūj (t)2 = 1.

We recall that, given an admissible trajectory x :
[0, T] → M , T > 0, corresponding to controls uj (·), j =
1, . . . , m, a reparameterization of x(·) is a trajectory
x̄(·) = x[τ(·)] with τ : [0, T̄] → [0, T] a function such that
dτ(t)/dt > 0 a.e. on [0, T̄]. Such a trajectory is defined on
[0, T̄]. Lemma 7 is a consequence of the fact that, for a.e.
t ∈ [0, T̄], we have

˙̄x(t) = d
dt

x[τ(t)]

= ẋ[τ(t)]τ̇ (t)

=
( m∑

j =1

uj [τ(t)]Fj {x[τ(t)]}
)
τ̇ (t)

=
m∑

j =1

{uj [τ(t)]τ̇ (t)}Fj [x̄(t)],

from which it follows that x̄(·) is admissible and corre-
sponds to controls uj [τ(·)]τ̇ (·), j = 1, . . . , m.

In the following, for the optimal control problem under
study, it is convenient to normalize T in such a way that
u1(t)2 + u2(t)2 = 1. Usually, when one makes this choice,
the trajectories are said to be parameterized by arc length.
If the objective is to reach the target at time T′, it is suf-
ficient to use the controls [αu1(αt),αu2(αt)], where α =
T/T′.

When T is fixed in such a way that u1(t)2 + u2(t)2 = 1,
we call problem PGrushin(T) simply PGrushin.

Note that, as a consequence of Lemma 7, if T is not
fixed then PGrushin(T) has no solution. Indeed, assume by
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contradiction that x(·), defined on [0, T0] and correspond-
ing to controls uj (·), j = 1, 2, is a minimizer for T free.
Let c ∈ (0, 1). The trajectory corresponding to controls
ūj (·) = uj (c ·)c, j = 1, 2, is a reparameterization of x(·)
reaching the final point at time T̄ = T0/c with a cost

∫ T0/c

0

2∑
j =1

uj (ct)2c2dt = c
∫ T0

0

2∑
j =1

uj (t)2dt,

<

∫ T0

0

2∑
j =1

uj (t)2dt,

which leads to a contradiction.

Proof of Proposition 6. Let us define

L[u(·)] =
∫ T

0

√
u1(t)2 + u2(t)2dt,

E[u(·)] =
∫ T

0
[u1(t)2 + u2(t)2]dt.

We are going to use the Cauchy-Schwarz inequality
〈f , g〉2 ≤ ‖f ‖2‖g‖2 (with equality holding if and only if f
and g are proportional), which holds in any Hilbert space.
This inequality simply tells us that the scalar product of
two vectors is less than or equal to the product of the
norms of the two vectors (with equality holding if and
only if the two vectors are collinear). In particular, this can
be used in the space L2([0, T], R) of measurable functions
f : [0, T] → R with

∫ T
0 f (t)2 dt < ∞. Namely,

( ∫ T

0
f (t)g(t) dt

)2

≤
∫ T

0
f (t)2 dt

∫ T

0
g(t)2 dt

(with equality holding if and only if f ∝ g, a.e.). Now, let
f (t) =

√
u1(t)2 + u2(t)2 and g(t) = 1 for t ∈ [0, T]. Note

that f , g ∈ U ⊂ L2([0, T], R). We have

L[u(·)]2 ≤ E[u(·)]T

[with equality holding if and only if u1(t)2 + u2(t)2 =
const a.e.]. Now, let u(·) be a minimizer of E defined
on [0, T]. Assume by contradiction that u1(t)2 + u2(t)2 is
not a.e. constant. Then L[u(·)]2 < E[u(·)]T. Let x̄(·) be
an admissible trajectory defined on [0, T] corresponding
to controls satisfying

√
ū1(t)2 + ū2(t)2 = L[u(·)]/T a.e.,

of which x(·) is a reparameterization as in Lemma 7.
One immediately checks that L[u(·)] = L[ū(·)]. For this
trajectory, we have

E[ū(·)]T = L[ū(·)]2 = L[u(·)]2 < E[u(·)]T,

contradicting the fact that u(·) is a minimizer of E. �

Now we have the following result.

Proposition 8. Problem PGrushin is equivalent to the prob-
lem of minimizing time with the constraint on the controls
u1(t)2 + u2(t)2 ≤ 1.

Proof. Since for PGrushin we have u1(t)2 + u2(t)2 = 1 a.e.,
then ∫ T

0
[u1(t)2 + u2(t)2]dt = T.

Hence, PGrushin is equivalent to the problem of minimiz-
ing T with the constraint on the controls u1(t)2 + u2(t)2 =
1. To conclude the proof, let us show that a trajectory
corresponding to controls for which the condition

u1(t)2 + u2(t)2 = 1 a.e. (32)

is not satisfied cannot be optimal for the time-optimal con-
trol problem mentioned in the statement. Actually, if Eq.
(32) is not satisfied then L = ∫ T

0

√
u1(t)2 + u2(t)2 < T and

an arc length reparameterization of the trajectory reaches
the target in exactly time L. �

Let us now go back to the problem of existence of
optimal trajectories for PGrushin. Thanks to Proposition 8,
PGrushin can be equivalently recast as a time-optimal con-
trol problem with controls in the convex and compact
set U = {(u1, u2) ∈ R2 | u2

1 + u2
2 ≤ 1}. We can then apply

Propositions 3 and 12 and deduce the existence of an opti-
mal trajectory for PGrushin [as well as PGrushin(T) for every
T > 0].

C. Application of the PMP

Before applying the PMP, it is convenient to reformu-
late the problem in spherical coordinates. Indeed, one can
prove the following statement.

Claim 1. Consider an optimal control problem as in the
statement of the PMP (Theorem 5). If all admissible trajec-
tories starting from qin are contained in a submanifold of M
of dimension strictly smaller than n, then each admissible
trajectory has an abnormal extremal lift.

This property can be qualitatively justified as follows.
We have already mentioned that abnormal trajectories
correspond to singularities of the functional that maps a
control law to the final point of the corresponding con-
trolled trajectory. If all admissible trajectories starting from
qin are contained in a proper submanifold of M then the
endpoint functional is everywhere singular, meaning that
each admissible trajectory is abnormal.

As a consequence, since in our case all trajectories are
contained in the sphere S2, if we apply the PMP in R3, all
optimal trajectories admit an abnormal extremal lift. This
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FIG. 4. Picture of the sphere with the spherical coordinates θ
and ϕ.

creates additional difficulties that can be avoided working
directly on S2 in spherical coordinates.

Let us introduce the coordinates (θ ,ϕ) as displayed in
Fig. 4 such that

x1 = sin θ cosϕ, x2 = cos θ , x3 = sin θ sinϕ.

In these coordinates, the starting point x(0) = (1, 0, 0)
and the final point x(T) = (0, 0, 1) become (θ ,ϕ)(0) =
(π/2, 0), (θ ,ϕ)(T) = (π/2,π/2). Note that these coordi-
nates are singular for θ = 0 and θ = π , but such a singular-
ity does not create any problem, as can be checked by using
a second system of coordinates around the singularity. The
control system then takes the form

θ̇ = −u1(t) cosϕ + u2(t) sinϕ,

ϕ̇ = cot(θ)[u1(t) sinϕ + u2(t) cosϕ].
(33)

It can be simplified by using the controls v1 and v2 defined
by

v1 = −u1 cosϕ + u2 sinϕ,

v2 = u1 sinϕ + u2 cosϕ,
(34)

which do not modify the expression of the cost C since
u2

1 + u2
2 = v2

1 + v2
2. The control system now becomes

(
θ̇

ϕ̇

)
= v1(t)X1(θ ,ϕ)+ v2(t)X2(θ ,ϕ),

where

X1(θ ,ϕ) =
(

1
0

)
, X2(θ ,ϕ) =

(
0

cot(θ)

)
.

Let us now apply the PMP. Set q = (θ ,ϕ) and let p =
(pθ , pϕ). The pre-Hamiltonian (14) has the form

H(q, p , v, p0)

= v1〈p , X1(q)〉 + v2 〈p , X2(q)〉 + p0(v2
1 + v2

2)

= v1pθ + v2pϕ cot(θ)+ p0(v2
1 + v2

2).

We consider the steps of Sec. VI C first for abnormal (p0 =
0) and then for normal (p0 = − 1

2 ) extremals.
Step 1. In this step, we have to apply the maximiza-

tion condition to find the control as a function of q and
p . Since the controls are unbounded and the Hamiltonian
is concave, the maximization condition is equivalent to

∂H
∂v1

[q(t), p(t), v(t), p0] ≡ 0,

∂H
∂v2

[q(t), p(t), v(t), p0] ≡ 0.
(35)

For abnormal extremals, we obtain

〈p(t), X1[q(t)]〉 = pθ (t) ≡ 0,

〈p(t), X2[q(t)]〉 = pϕ(t) cot[θ(t)] ≡ 0.

These conditions do not permit one to obtain the control as
a function of q and p . Hence, for this problem, abnormal
extremals correspond to singular controls. Since p and p0

cannot be simultaneously zero, the only possibility to have
an abnormal extremal is that θ(t) ≡ π/2 on [0, T]. In this
case, from Eq. (33), we deduce that ϕ(t) should be con-
stant. As a consequence, an abnormal extremal trajectory
starting from the initial condition (θ ,ϕ)(0) = (π/2, 0) will
never reach the final condition (θ ,ϕ)(T) = (π/2,π/2) and
we can disregard these trajectories.

For normal extremals, condition (35) gives

v1(t) = 〈p(t), X1[q(t)]〉 = pθ (t),

v2(t) = 〈p(t), X2[q(t)]〉 = pϕ(t) cot[θ(t)].
(36)

Hence, we obtain the controls as a function of q and p
and we can conclude that normal extremals correspond to
regular controls.

Step 2. Let us insert Eq. (36) into the Hamiltonian equa-
tions (i) and (ii) of Theorem 5. We have to consider the
case p0 = −1/2 only. We obtain

θ̇ (t) = ∂H
∂pθ

[q(t), p(t), v(t), −1/2]

= v1(t)

= pθ (t), (37)
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ṗθ (t) = −∂H
∂θ

[q(t), p(t), v(t), −1/2]

= v2(t)pϕ(t){1 + cot[θ(t)]2}
= pϕ(t)2 cot[θ(t)]{1 + cot2[θ(t)]}, (38)

ϕ̇(t) = ∂H
∂pϕ

[q(t), p(t), v(t), −1/2]

= v2(t) cot[θ(t)]

= pϕ(t) cot2[θ(t)], (39)

ṗϕ(t) = −∂H
∂ϕ

[q(t), p(t), v(t), −1/2] = 0. (40)

Equation (40) tells us that pϕ is a constant of the motion,
denoted by a in the following. We are then left with the
differential equations

θ̇ = pθ , ṗθ = a2 cot(θ)[1 + cot2(θ)]. (41)

Once these are solved, ϕ is obtained by integrating in time
Eq. (39), which now has the form

ϕ̇ = a cot2(θ). (42)

Equations (41) and (42) should be solved for every value
of a ∈ R with the initial conditions

θ(0) = π/2, ϕ(0) = 0, pθ (0) = ±1.

The last condition comes from the property that the maxi-
mized Hamiltonian is now fixed to 1

2 (corresponding to the
choice of taking T in such a way that optimal trajectories
are parameterized by arc length). More precisely,

1
2 = H

[
q(t), p(t), v(t), − 1

2

]
= v1(t)pθ (t)+ v2(t)a cot[θ(t)]

− 1
2 [v1(t)2 + v2(t)2]

= 1
2 {pθ (t)2 + a2 cot2[θ(t)]}.

Requiring this condition at t = 0, one gets pθ (0) = ±1.
The system of Eqs. (41) can be solved by again using the

fact that the maximized Hamiltonian is equal to 1
2 , which

implies that

θ̇ (t)2 = 1 − a2 cot2[θ(t)].

Using a separation of variables, we arrive [with the initial
condition θ(0) = π/2] at

θ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arccos
(

sin(
√

1 + a2t)√
1 + a2

)
if pθ (0) = −1,

π − arccos
(

sin(
√

1 + a2t)√
1 + a2

)
if pθ (0) = 1.

These expressions lead to a simple formula for x2(t),
namely,

x2(t) = ±
(

sin(
√

1 + a2t√
1 + a2

)
. (43)

As already explained, the expression for ϕ can be obtained
by integrating in time Eq. (42) using the expression of θ(t)
with initial condition ϕ(0) = 0. The final result is more
easily expressed in Cartesian coordinates:

x1(t) = a sin(at) sin(
√

1 + a2t)√
1 + a2

+ cos(at) cos(
√

1 + a2 t), (44)

x3(t) = sin(at) cos(
√

1 + a2 t)

− a sin(
√

1 + a2 t) cos(at)√
1 + a2

. (45)

The corresponding controls can be obtained via Eqs. (37),
(38), and (34), or from Eq. (29), providing

u1(t) = −ẋ1(t)/x2(t) = ± cos(at),

u2(t) = ẋ3(t)/x2(t) = ∓ sin(at).

Step 3. In this step, we have to find the initial covector [i.e.,
pθ (0) ∈ {−1, +1} and a = pϕ ∈ R] whose correspond-
ing trajectory arrives at the final target (x1, x2, x3)(T) =
(0, 0, 1).

From Eq. (43), requiring that x2(T) = 0 we get
sin(

√
1 + a2 T) = 0. Then, from Eq. (44), requiring that

x1(T) = 0 we arrive at cos(aT) = 0. We then have the
conditions

√
1 + a2T = n1π , aT = π

2
+ n2π ,

with n1, n2 ∈ Z. Note that n1 > 0 since T > 0, and, hence,

a√
1 + a2

= n2 + 1/2
n1

,
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from which we deduce that |n2 + 1
2 | < n1. It follows that

a = (n2 + 1/2)/n1√
1 − [(n2 + 1/2)/n1]2

. (46)

The target is reached at time

T = πn1

√
1 −

(
n2 + 12

n1

)2

. (47)

Step 4. The previous step provided a discrete set of trajec-
tories reaching the target. Those arriving in a shorter time
correspond to n1 = 1 and n2 = 0 or n2 = −1, for which
T = π

√
3/2 and a = ±1/

√
3. The final expressions for the

optimal trajectories and optimal controls are

x1(t) = cos3(t/
√

3),

x2(t) = ±
√

3
2

sin
(

2t√
3

)
,

x3(t) = −ε sin3(t/
√

3),

and

u1(t) = ± cos(t/
√

3),

u2(t) = ∓ε sin(t/
√

3),

where ε = ±1 is the sign of a.
We point out that the two trajectories arriving at time

T at the point (0, 0, 1) are those corresponding to n2 = 0
(i.e., to a = 1/

√
3) and to pθ (0) = ∓1 [i.e., to the + sign

in Eq. (43)], while the two trajectories arriving at time T
at the point (0, 0, −1) are associated with n2 = −1 (i.e.,
to a = −1/

√
3). See Sec. VIII A. The four trajectories

obtained in this way are optimal since we know that opti-
mal trajectories exist and those that we have selected are
the best among all trajectories satisfying a necessary condi-
tion for optimality. In this example, note that we can select
the optimal trajectories by applying the PMP and finding
by hand the best extremals, without using second-order
conditions nor other sufficient conditions for optimality.

Figures 5 and 6 respectively display the two symmet-
ric extremal trajectories reaching the target state (0, 0, 1)
at time T and the time evolution of the corresponding
controls.

IX. EXAMPLE 2: A MINIMUM TIME TWO-LEVEL
QUANTUM SYSTEM WITH A REAL CONTROL

A. Formulation of the control problem

We consider the control of a spin-1/2 particle whose
dynamics is governed by the Bloch equation in a given

FIG. 5. Plot of the two extremal trajectories (in red and blue)
on the sphere going from the point (1, 0, 0) to the point (0, 0, 1)
and minimizing the cost functional C.

rotating frame [98,99]:

Ṁx = −ωMy ,

Ṁy = ωMx − ωx(t)Mz,

Ṁz = ωx(t)My .

Here M = (Mx, My , Mz) is the magnetization vector and
ω is the offset term. The system is controlled through a
single magnetic field along the x axis that satisfies the con-
straint |ωx| ≤ ωmax. We introduce normalized coordinates
(x, y, z) = M/M0, where M0 is the thermal equilibrium
magnetization, a normalized control u = ωx/ωmax that sat-
isfies the constraint |u| ≤ 1, and a normalized time τ =
ωmaxt (denoted t below). Dividing the previous system by
ωmaxM0, we find that the time evolution of the normalized

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

FIG. 6. Time evolution of the controls u1 (in black) and u2 (in
red). The control time T and the parameter a are respectively set
to π

√
3/2 and −1/

√
3.
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coordinates is given by the equations
⎛
⎝ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝−�y
�x
0

⎞
⎠ + u(t)

⎛
⎝ 0

−z
y

⎞
⎠ ,

where � = ω/ωmax is the normalized offset. The trajec-
tories of the system lie on the Bloch sphere defined by
the equation x2 + y2 + z2 = 1. The manifold M is here the
sphere S2. The differential system can be written in a more
compact form as

q̇ = (F + uG)q, (48)

where q = (x, y, z) is the state of the system, u(t) ∈ U =
[−1, 1], and F and G are the skew-symmetric 3 × 3
matrices

F =
⎛
⎝ 0 −� 0
� 0 0
0 0 0

⎞
⎠ , G =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ .

The vector fields Fq and Gq generate rotations respec-
tively around the z and x axes.

Existence of time-optimal trajectories. By point 1 of
Proposition 9, any initial point q0 on the Bloch sphere
M can be connected by an admissible trajectory of the
control system to any other point q1 on the Bloch sphere
(see also Ref. [86]). In this case the existence of a time-
optimal trajectory connecting q0 to q1 is a direct conse-
quence of Proposition 12 below or Proposition 3. Indeed,
U = [−1, 1] is compact and the set {Fq + uGq | u ∈ U} is
convex for any point q of the Bloch sphere.

B. Application of the PMP

The goal of the two control processes that we are con-
sidering is to steer the system in a minimum time from
the north pole (0, 0, 1) of the Bloch sphere to the south
pole (0, 0, −1) or the state (1, 0, 0), respectively. We fol-
low here the results established in Refs. [48,100] (see also
Ref. [101] for an experimental implementation).

The time-optimal control problem is solved by the
application of the PMP. Here the cost C to minimize is

C =
∫ T

0
dt = T → min,

where T is free. The pre-Hamiltonian can be expressed as

H(q, p , u, p0) = p(F + uG)q + p0,

where p = (px, py , pz) ∈ R3 is the covector and p0 is a non-
positive constant such that p and p0 are not simultaneously
equal to 0. (Here p is seen as a row vector and q as a
column vector.) The value of H is constantly equal to 0

since the final time is free. The PMP states that the optimal
trajectories are solutions of the equations

q̇(t) = ∂H
∂p

[q(t), p(t), u(t), p0],

ṗ(t) = −∂H
∂q

[q(t), p(t), u(t), p0],

H[q(t), p(t), u(t), p0] = max
|v|≤1

H[q(t), p(t), v, p0].

The dynamics of the adjoint state p is given by

ṗ(t) = −p(t)[F + u(t)G]. (49)

Note that d‖p(t)‖2/dt = 0, so that ‖p(t)‖ does not depend
on time. Its constant value is nonzero since H = 0 and
(p , p0) 
= 0.

Steps 1 and 2. Since the only term of the pre-
Hamiltonian depending on the control is upGq, the max-
imization condition of the PMP leads to the introduction
of the switching function

�(t) = p(t)Gq(t).

In the regular case in which �(t) 
= 0, we deduce from the
maximization condition that the optimal control is given by
the sign of�, u(t) = sign[�(t)]. The corresponding trajec-
tory is called a bang trajectory. If� has an isolated zero in
a given time interval then the control function may switch
from −1 to 1 or from 1 to −1. A bang-bang trajectory is a
trajectory obtained after a finite number of switches.

Using Eq. (49), we have

�̇(t) = p(t)[G,F ]q(t), (50)

where [·, ·] denotes the matrix commutator operator. In
particular, � is a C1 function and, for almost every t,

�̈(t) = p(t)[F , [F ,G]]q(t)+ u(t)p(t)[G, [F ,G]]q(t).

Since [F , [F ,G]] = −�2G and [G, [F ,G]] = F , we have,
for a.e. t,

�̈(t) = −�2�(t)+ u(t)p(t)Fq(t)

= −�2�(t)− p0u(t), (51)

where� = √
1 +�2 and the second equality follows from

the identity H = 0.
Abnormal extremals. Abnormal extremals are char-

acterized by the equality p0 = 0, from which, together
with H = 0, we deduce that �(t) = −p(t)Fq(t)/u(t). If
�(t) = 0 at time t then p(t) is orthogonal both to Fq(t)
and Gq(t). If, moreover, t were not an isolated zero of �
then �̇(t) = 0, since � is C1. It would follow from Eq.
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(50) that p(t) is also orthogonal to [G,F ]q(t). Since, for
every q ∈ M , the vectors Fq, Gq, and [G,F ]q span the
tangent plane TqM to the sphere M , we would deduce that
p(t) = 0, contradicting the PMP. This means that abnormal
extremals are necessarily bang-bang extremals. Moreover,
we deduce from Eq. (51) that the switching times are the
zeros of a nontrivial solution of the equation

�̈+�2� = 0.

The length of an arc between any two successive switching
times is then equal to π/�.

Singular arcs. When the trajectory is normal, there
might exist extremals for which � is zero on a nontrivial
time interval. The control is singular on such an interval,
since it cannot directly be obtained from the maximization
condition. The restriction of the trajectory to an interval
on which � ≡ 0 is called a singular arc. Singular arcs
are characterized by the fact that the time derivatives of
� at all orders are zero. Since p(t) is different from zero,
the only possibility to have simultaneously �(t) = 0 and
�̇(t) = 0 is that the vectors Gq(t) and [G,F ]q(t) are par-
allel. Since Gq(t) and [G,F ]q(t) respectively generate the
rotations around the x and the y axes, we deduce that sin-
gular arcs are contained in the equator z = 0 of the sphere.
The singular control law us can be calculated from Eq.
(51) by enforcing that � and its second time derivative are
zero, yielding us(t) = 0. As could be expected, this control
law generates a rotation along the equator. It is admissible
because |us| ≤ 1.

Normal bang-bang extremals. Consider a normal
extremal and an interior bang arc of duration T between
the switching times t0 and t0 + T on which the control
u is constantly equal to +1 or −1. An interior arc is an
arc that is neither at the beginning nor at the end of the
extremal. We normalize p0 to −1. According to Eq. (51),
the function � = �− u/�2 is a solution of �̈ +�2� =
0. Moreover, since � is nonconstant, then � is nontrivial.
Hence,�(t) = ν cos(�t + θ0) for some ν > 0 and θ0 ∈ R.
Moreover, ν > 0 is uniquely identified by u and �̇(t0)
through the equalities �(t0) = −u/�2 and �̇(t0) = �̇(t0).
Switchings occur if � = � + u/�2 vanishes and changes
sign. Since, moreover, sign[u] = sign[�], it follows that
� is larger than the negative value −1/�2 on (t0, t0 + T)
when u = +1 and smaller than the positive value 1/�2 on
(t0, t0 + T)when u = −1. Hence, T is larger than π/� and

�̇(t0 + T) = −�̇(t0).

If �̇(t0) = 0, we deduce that T = 2π/�. Note that if u
is constantly equal to +1 or −1 then the solutions of
q̇ = (F + uG)q are 2π/� periodic rotations around the
axis spanned by (u, 0,�). Since a time-optimal trajec-
tory cannot self-intersect, we conclude that T < 2π/� and
�̇(t0) 
= 0.

If t0 + T is the starting time of another internal bang
arc then by the above considerations the duration of such
an internal bang arc is also equal to T. Given a normal
bang-bang trajectory, there then exists T ∈ (π/�, 2π/�)
such that the trajectory is the concatenation of bang arcs of
duration T, except possibly for the first and last bang arcs,
whose lengths can be smaller than T.

General extremals. As we have seen in the previous
paragraphs, if a trajectory contains an internal bang arc
then it is a bang-bang trajectory. Otherwise the set of zeros
of � is connected, that is, either � has a single zero or it
vanishes on a nontrivial singular arc and is different from
zero out of it.

To summarize, extremal trajectories are of two types.

• Bang-bang trajectories whose internal bang arcs all
have the same length T ∈ [π/�, 2π/�) (the case T =
π/� corresponding to abnormal extremals) and for
which the first and last bang arcs have lengths at most
T.

• Concatenations of a (possibly trivial) bang arc of
length smaller that 2π/�, a singular arc on which
us = 0, and another (possibly trivial) bang arc of
length smaller than 2π/�.

Steps 3 and 4. We solve in this paragraph two time-
optimal control problems. Starting from the north pole
(0, 0, 1), the goal is to reach in a minimum time the points
(0, 0, −1) [problem (P1)] and (1, 0, 0) [problem (P2)]. To
simplify the derivation of the optimal solutions, we assume
that |�| ≤ 1 [48].

Before solving (P1) and (P2), we first derive analytical
results describing the dynamics of the system. Consider
a bang extremal trajectory starting from the north pole at
time t = 0 with control u(t) = ε = ±1. The corresponding
trajectory is given by

x(t) = ε�

�2 [1 − cos(�t)],

y(t) = − ε

�
sin(�t),

z(t) = 1 + 1
�2 [cos(�t)− 1].

The first two times for which z(t) = 0 are t1 = (1/�)[π −
arccos(�2)] and t2 = (1/�)[π + arccos(�2)]. Note that
all other times for which z(t) = 0 are larger than 2π/�
and cannot be the duration of a bang arc of an optimal
trajectory.

The optimal solution of (P1) is a bang-bang trajec-
tory with a first switch on the equator at t = t1. The total
duration of the process is t1 + t2 = 2π/�. A symmetric
configuration is possible with a first switch at t = t2. The
two trajectories are displayed in Fig. 7. Let us discuss how
the optimality of such a trajectory can be asserted. The
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FIG. 7. Optimal trajectories (in blue) going from the north pole
to the south pole of the Bloch sphere. The solid black line indi-
cates the position of the equator. The parameter � is set to −0.5.
For one of the two optimal trajectories, a control u = −1 is first
applied during a time t1, followed by a control u = +1 during a
time t2, while for the other trajectory, u = −1 lasts for a time t2
and u = +1 for a time t1.

proposed trajectory is clearly extremal and connects the
chosen initial and final points. Since a bang-bang trajec-
tory with at least two internal bang arcs has duration larger
than 2π/�, it follows that any bang-bang trajectory with
four or more bang arcs has a duration larger than the can-
didate optimal trajectory (that is, 2π/�). One is then left
to compare 2π/� with finitely many types of trajectories:
bang-bang trajectories with two or three bang arcs, and
trajectories obtained by concatenation of a bang arc, a sin-
gular arc, and a bang arc. By setting the initial and final
points, this leaves few competitors to the optimal trajec-
tory, which can be easily excluded by enumeration. As an
example, we consider the concatenation of a bang arc with
u = −1, a singular arc, and a new bang arc with u = +1.
The two bang arcs last for a time t1, while the duration
of the singular arc is (2/�) arctan(

√
1 −�2/�). It is then

straightforward to deduce that the duration of this extremal
solution is larger than t1 + t2 = 2π/�, except in the case
� = 1 for which the singular arc is of length zero.

Let us now discuss the solution of (P2). Using the results
of Sec. IX B, we consider the concatenation of a bang
extremal with u = +1 during the time t1 and of a sin-
gular extremal with u = 0 during the time ts. At time
t = t1, the trajectory reaches the point (�, −√

1 −�2, 0).
We deduce that ts = (1/�) arctan(

√
1 −�2/�). The total

duration of the control process is t1 + ts. The correspond-
ing trajectory is represented in Fig. 8. One can check that
all other candidates for optimality join (1, 0, 0) in a longer
time. The situation is more complicated than for (P1),
since here ts → ∞ as � → 0, so the candidate trajec-
tory should be compared with trajectories with more and

FIG. 8. Optimal trajectory (in blue) going from the north pole
to the point (1, 0, 0) of the x axis. The solid black line indicates
the position of the equator. The parameter � is set to 0.5.

more bangs as � → 0. A proof of the optimality of the
trajectory described above can be obtained, for instance,
using optimal synthesis theory, i.e., describing all the opti-
mal trajectories starting from the north pole, as done in
Ref. [48].

X. APPLICATIONS OF QUANTUM OPTIMAL
CONTROL THEORY

We discuss in this section the link between the mate-
rial and results presented in this tutorial and the current
research objectives in this field, both from a theoretical
and an experimental point of view. The ability to quickly
and accurately perform operations in a quantum device
is a key task in quantum technologies. Quantum optimal
control theory addresses this challenge by combining ana-
lytical and numerical tools to design procedures adapted
to the experimental setup under study. This approach has
the key advantage of being based on a rigorous theoreti-
cal framework on which all developments have been based
since the 1980s. In the case of a low-dimensional quan-
tum system, as in the two examples presented in Secs. VIII
and IX, the optimal control problem may be solved ana-
lytically or at least with a very high numerical accuracy.
For high-dimensional systems, an efficient alternative is
provided by numerical optimal control procedures, which
include first- and second-order gradient ascent algorithms
[45,66,102,103] whose structure is based on the PMP. The
connection between the PMP and gradient-based optimiza-
tion algorithms is described in Sec. VII. Their flexibility
allows them to adapt to many experimental situations for
which precise modeling of the dynamics is known. As
concrete and recent examples, we mention the experimen-
tal implementation of such techniques in Rydberg atoms
[104,105], in spin-wave states of atomic ensembles [106],
in electron spin resonance [107], or in superconducting
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cavity resonator [108]. The diversity of these examples
shows the key role that optimal control now plays in
quantum technologies. We describe below some examples
of recent applications that are based on the mathemati-
cal formalism described in this tutorial. We also indicate
some open issues in this field. We stress that our aim is
not to provide an exhaustive list of all optimal control
studies in this very active area (we refer the interested
reader to recent reviews on this subject [2,4–6]), but rather
to give an overview of the different aspects that can be
analyzed.

The analytical techniques have been applied recently to
a series of fundamental and practical issues in quantum
technologies such as robustness [109–115] and selectivity
[116,117] of the control process with respect to parame-
ters of the system Hamiltonian. The robustness property
is a key factor for the experimental implementation of
open-loop optimal pulses. The basic idea consists in simul-
taneously controlling an ensemble of identical systems that
differ only by the value of the unknown parameter. Robust
or selective optimal pulses are respectively obtained in
the case where the target states are the same or different
according to the systems. In the same direction, numer-
ical optimal control has also been employed to improve
the estimation of Hamiltonian parameters [118,119]. Here,
from a specific cost functional, the control is used to opti-
mize the discrimination between the system dynamics,
which leads to a precise characterization of the Hamil-
tonian [120]. Using the same type of approach, optimal
control has proven to be very effective for quantum sensing
[23,121,122].

A key aspect of quantum technologies is the minimum
time to perform a given operation. Lower bounds on the
time can be established in the framework of quantum speed
limits [13,123] where the time is expressed as a ratio
between the distance to the target state and the dynamical
speed of evolution. Time-optimal trajectories correspond
by definition to the speed limit of the processes. The solu-
tions of the two examples solved in this tutorial therefore
give the quantum speed limits of the problems under study.
However, in a higher-dimensional quantum system, the
many local minima of the control landscape make it very
difficult to find a good approximation of the optimal trajec-
tory and generally lead to an upper bound of the minimum
time. Recent studies have explored the link between these
two formalisms [54,124]. A major step forward would be
to rigorously describe the concept of speed limit in terms
of the Pontryagin maximum principle [125,126].

Quantum thermodynamics is nowadays a very useful
tool to describe the dynamics of open quantum systems
used in quantum technologies [127]. Optimal control and
the PMP can be applied to analyze many issues in this field,
such as the enhancement of quantum engine performances
[128,129], work extraction [130,131], or qubit purification
[132–134]. The quantification of the resources to control

a quantum system has also been discussed and could be
optimized from the PMP [135].

An intense effort is being made to develop new quantum
optimal control algorithms, which are well suited to exper-
imental limitations and constraints [136–140] or which are
particularly effective in designing optimal pulses [67,141,
142]. In particular, hybrid optimal control using feedback
from the experiment has been developed to avoid prob-
lems due to inaccuracies in the modeling of the dynamics.
The structure of the control landscape for the preparation
of quantum many-body systems has been identified and
exhibits a spin-glass-like phase transition in the space of
control protocols close to the optimal fidelity [143]. This
structure explains the difficulty in numerically finding the
optimal solution in this region. Combining optimal con-
trol and machine learning approaches as proposed in Ref.
[144] could be a way to solve this problem and to improve
the efficiency of optimal algorithms [145,146]. However,
we stress that a rigorous mathematical description of these
numerical methods and results will be necessary in the
future to systematically apply these approaches to other
quantum devices.

We conclude this section by pointing out that the PMP
may also play a more unexpected role in quantum com-
puting. It has recently been shown that Grover’s quantum
search problem can be mapped to a time-optimal control
problem, and then described through the PMP [147]. A
connection between optimal control theory and variational
quantum algorithms [148] has been established in Ref.
[149]. A general description of this intrinsic link is given
in Ref. [150] where optimal control is used to precisely
adjust the parameters of a quantum circuit. These results
highlight that the PMP as a general optimization tool is
not only interesting for the computation of time-dependent
control pulses, but also in other optimization problems of
interest in quantum technologies.

XI. CONCLUSION

In this tutorial, we have attempted to give the reader a
minimal background on the mathematical techniques of
OCT. In our opinion, this is a fundamental prerequisite
to rigorously and correctly apply these tools in quantum
control.

The objectives of the tutorial are twofold. First, we have
highlighted the key concepts of the PMP using ideas based
on the finding of extrema of functions of several variables.
This analogy gives nonexperts an intuition of the tools of
optimal control that might seem abstract on first reading.
We have then stated the PMP and described in detail the
different steps to be followed in order to solve an optimal
control problem. Some are rarely discussed in quantum
control, such as the existence of solutions or abnormal
and singular extremals, while they play a crucial role in

030203-24



INTRODUCTION TO THE PMP FOR QUANTUM OPTIMAL CONTROL... PRX QUANTUM 2, 030203 (2021)

some problems. The link between the PMP and gradient-
based optimization algorithms has been explained, which
also highlights the role of such mathematical tools in any
numerical optimization process. Second, we have solved
two basic control problems, namely the control of a three-
level quantum system by means of two complex resonant
fields and the control of a spin-1/2 particle through a real
off-resonance driving. The low dimension of the two sys-
tems allows us to analytically express the optimal solutions
and to give a complete geometric description of the control
protocol. Such examples can be used as a starting point
by the reader to apply the PMP to more complex quantum
systems. A series of recent results using OCT has briefly
been discussed to highlight current research directions in
this area.

XII. LIST OF NOTATION

We provide in Table III a list of the main notation used
in the paper as well as the first section in which they appear
or are defined.
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APPENDIX A: TEST OF CONTROLLABILITY

We give in this section a general and useful sufficient
condition for controllability. This section completes the
discussion of Sec. III.

Proposition 9. Let M be a smooth manifold, and let U
be a subset of Rm containing a neighborhood of the ori-
gin. Consider a control system of the form q̇ = F0(q)+∑m

j =1 uj (t)Fj (q), with F0, . . . , Fm smooth vector fields on
M and u(t) = [u1(t), . . . , um(t)] ∈ U. Let L0 be the Lie
algebra generated by the vector fields F0, . . . , Fm and
L1 be the Lie algebra generated by the vector fields
F1, . . . , Fm. The system is controllable if at least one of the
following conditions is satisfied:

1. F0 is a recurrent vector field and dim[L0(q)] is
equal to the dimension of M at every q ∈ M;

2. U = Rm and dim[L1(q)] is equal to the dimension
of M at every q ∈ M.

For a definition of Lie algebra generated by a set of vec-
tor fields and for the notion of a recurrent vector field, we
refer the reader to Refs. [28,151]. For our purposes, it is
sufficient to recall that

(a) if F0(q) = A0q, . . . , Fm(q) = Amq are linear vector
fields then G ∈ L0 if and only if G(q) = Bq with
B in the matrix Lie algebra (for the commutator
product) generated by A0, . . . , Am;

(b) if a vector field F is such that every solution of q̇ =
F(q) is periodic then F is recurrent.

TABLE III. Main notation used in the paper.

Notation Definition Section

q(t) The state of the system at time t III
f A smooth vector-valued function of q and u that defines the control system III
f0 A smooth scalar-valued function of q and u that defines the cost functional III
M The manifold on which the state q(t) evolves III
T The final control time III
u(t) The value of the control law at time t III
U The set of possible values of u(t) III
U The set of admissible control laws III
T The set of target states III
d[T , q(T)] The distance between T and the final state q(T) III
R(qin) The set of reachable states from qin III
RT(qin) The set of reachable states in time T from qin III
F(q) The set of directions f (q, u) at q as u varies in U V
φ[q(T)] The terminal cost that depends on the final state q(T) V
J [u(·)] The value of the cost for a control u(·) VI
H The pre-Hamiltonian in the PMP VI
p The adjoint state in the PMP VI
p0 The abnormal multiplier VI
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With these sufficient conditions, we recover the standard
controllability conditions introduced in quantum control
for closed systems [85,86] and recalled in Sec. III.

APPENDIX B: FILIPPOV’S THEOREM

We state here Filippov’s theorem, which gives a suffi-
cient condition for the compactness of the reachable set
[26]. This section completes the discussion of Sec. V.

Theorem 10 Filippov. Fix T > 0. Consider the control
system q̇(t) = f [q(t), u(t)], q ∈ M, u ∈ U , where M is a
n-dimensional manifold and U ⊂ Rm. Fix an initial condi-
tion qin ∈ M. Assume that the following conditions hold:

• the set U is compact,
• the set F(q) = {f (q, u) | u ∈ U} is convex for every

q ∈ M,
• for every u ∈ U , the solution of q̇(t) = f [q(t), u(t)],

q(0) = qin, is defined on the whole interval [0, T].

Then the sets RT(qin) and R≤T(qin) are compact.

Here R≤T(qin) denotes the reachable set from qin within
time T, i.e., the set of points q̄ in M such that there exist
T′ ∈ [0, T] and an admissible trajectory q : [0, T′] → M
such that q(0) = qin and q(T′) = q̄.

Note that the third hypothesis of Theorem 10 is automat-
ically satisfied when M is compact.

By applying Filippov’s theorem to the augmented sys-
tem for Problem P1 introduced in Sec. V, we obtain the
following result.

Proposition 11. Fix T > 0. Assume that

• T is closed and RT(qin) ∩ T 
= ∅,
• the set U is compact,
• the set

F̂(q) =
{ (

f 0(q, u)
f (q, u)

) ∣∣∣∣ u ∈ U
}

is convex for every q ∈ M,
• for every u ∈ U , the solution of q̇(t) = f [q(t), u(t)],

q(0) = qin, is defined on the whole interval [0, T].

Then there exists a solution to problem P1.

Example 5. The conclusion of Proposition 11 may fail to
hold if we drop the convexity assumption on the set F(q)
of admissible velocities, as illustrated by the following
example. Take M = R2, U = {−1, 1}, and f (q, u) = Auq

with

A1 =
(−1 1

−1 0

)
and A−1 =

(−1 −1
1 0

)
.

We point out that the corresponding control system sat-
isfies all the assumptions of Theorem 10 except for the
convexity of F(q), since the control can only take two dis-
crete values −1 and 1. Pick qin = (1, 0) and any T > 0.
Then qT := e−Tqin is in the closure of RT(qin), since we
can end up arbitrarily close to qT at time T by applying a
control that switches fast enough between −1 and 1. On
the other hand, if q̇(t) = f [q(t), u(t)] at time t and q(t) has
a nonzero vertical component, then d‖q(t)‖/dt > −‖q(t)‖.
Since every trajectory of the control system starting at qin
necessarily leaves the horizontal axis, its final point at time
T has norm larger than e−T. Consequently, qT 
∈ RT(qin).
This proves that RT(qin) is not closed; hence, the conclu-
sion of Theorem 10 does not hold. This result is illustrated
in Fig. 9 that numerically shows that the distance to the tar-
get state tends to zero when the number of switches goes
to +∞. This example also highlights possible numerical
problems when the existence of the optimal solution is not
verified. Here, an optimization algorithm cannot converge
towards a well-defined control law.

The idea of reducing the problem of existence of an
optimal control to the compactness of the reachable set
of the augmented system can be used for more gen-
eral problems. For instance, if we add a terminal cost
φ[q(T)] to the cost

∫ T
0 f 0[q(t), u(t)] dt, where φ is a smooth

function (as, for instance, in Approach B, or in the gen-
eral formulation given in Sec. VI B), we get a similar
result adding to f 0[q(t), u(t)] the directional derivative
of φ along f [q(t), u(t)], that is, replacing f 0[q(t), u(t)]
by f 0[q(t), u(t)] + 〈dφ[q(t)], f [q(t), u(t)]〉. We recall that
here dφ[q(t)] denotes the differential of φ evaluated at q(t)
and that 〈·, ·〉 is the duality product between covectors of
T∗M and vectors of TM .

When the final time is free, it is more difficult to get
the existence of optimal trajectories. However, the com-
pactness of R≤T(qin) in the Filippov theorem can be used
to find conditions for the existence of optimal controls in
minimum time. We state this result in the case where M is
compact. Note that the problem of minimizing time can be
written in the form of Problem P1 with T free and f 0 = 1.

Proposition 12. Consider Problem P1 with T free, f 0 =
1, and M compact. Assume that

• T is closed and R(qin) ∩ T 
= ∅,
• the set U is compact,
• the set F(q) = {f (q, u) | u ∈ U} is convex for every

q ∈ M.

Then there exists a solution to the problem.
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FIG. 9. Illustration of the existence problem. Panels (a) and
(b) respectively depict the Euclidian distance d to the target as
a function of the number Ns of switchings and an example of
control law u with Ns = 8.

A straightforward application of Propositions 11 and 12
to closed quantum systems yields Proposition 3 of the main
text.

[1] A. Acin, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J.
Eisert, D. Esteve, N. Gisin, S. J. Glaser, and F. Jelezko
et al., The quantum technologies roadmap: A European
community view, New J. Phys. 20, 080201 (2018).

[2] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köck-
enberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, and
T. Schulte-Herbrüggen et al., Training Schrödinger’s cat:
Quantum optimal control, European Physical Journal D
69, 279 (2015).

[3] D. D’Alessandro, Introduction to Quantum Control and
Dynamics, Applied Mathematics and Nonlinear Science
Series (Chapman, Hall/CRC, Boca Raton, FL, 2008).

[4] C. Brif, R. Chakrabarti, and H. Rabitz, Control of quan-
tum phenomena: Past, present and future, New J. Phys.
12, 075008 (2010).

[5] C. Altafini and F. Ticozzi, Modeling and control of quan-
tum systems: An Introduction, IEEE Trans. Automat.
Control 57, 1898 (2012).

[6] D. Dong and I. R. Petersen, Quantum control theory and
applications: A survey, IET Control Theory & Applica-
tions 4, 2651 (2010).

[7] C. P. Koch, Controlling open quantum systems: Tools,
achievements, and limitations, Journal of Physics: Con-
densed Matter 28, 213001 (2016).

[8] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-
rontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts
to adiabaticity: Concepts, methods, and applications, Rev.
Mod. Phys. 91, 045001 (2019).

[9] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and
K. Bergmann, Stimulated Raman adiabatic passage in
physics, chemistry, and beyond, Rev. Mod. Phys. 89,
015006 (2017).

[10] C. P. Koch, M. Lemeshko, and D. Sugny, Quantum con-
trol of molecular rotation, Rev. Mod. Phys. 91, 035005
(2019).

[11] D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin,
Robust Quantum Control by a Single-Shot Shaped Pulse,
Phys. Rev. Lett. 111, 050404 (2013).

[12] G. T. Genov, D. Schraft, T. Halfmann, and N. V. Vitanov,
Correction of Arbitrary Field Errors in Population Inver-
sion of Quantum Systems by Universal Composite Pulses,
Phys. Rev. Lett. 113, 043001 (2014).

[13] S. Deffner and S. Campbell, Quantum speed limits: From
Heisenberg’s uncertainty principle to optimal quantum
control, Journal of Physics A: Mathematical and Theoret-
ical 50, 453001 (2017).

[14] H. Wakamura and T. Koike, A general formulation of
time-optimal quantum control and optimality of singular
protocols, New. J. Phys. 22, 073010 (2020).

[15] D. C. Brody and D. M. Meier, Solution to the Quan-
tum Zermelo Navigation Problem, Phys. Rev. Lett. 114,
100502 (2015).

[16] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Time-
Optimal Quantum Evolution, Phys. Rev. Lett. 96, 060503
(2006).

[17] X. Wang, M. Allegra, K. Jacobs, S. Lloyd, C. Lupo,
and M. Mohseni, Quantum Brachistochrone Curves as
Geodesics: Obtaining Accurate Minimum-Time Protocols
for the Control of Quantum Systems, Phys. Rev. Lett. 114,
170501 (2015).

[18] A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Opti-
mally robust shortcuts to population inversion in two-level
quantum systems, New J. Phys. 14, 093040 (2012).

[19] S. Lloyd and S. Montangero, Information Theoretical
Analysis of Quantum Optimal Control, Phys. Rev. Lett.
113, 010502 (2014).

[20] F. K. Wilhelm, S. Kirchhoff, S. Machnes, N. Wittler, and
D. Sugny, Lecture Notes for the 51st IFF Spring School
(2020).

[21] J. P. Palao and R. Kosloff, Quantum Computing by an
Optimal Control Algorithm for Unitary Transformations,
Phys. Rev. Lett. 89, 188301 (2002).

[22] J. Geng, Y. Wu, X. Wang, K. Xu, F. Shi, Y. Xie, X. Rong,
and J. Du, Experimental Time-Optimal Universal Control
of Spin Qubits in Solids, Phys. Rev. Lett. 117, 170501
(2016).

[23] P. Rembold, N. Oshnik, M. M. Müller, S. Montangero,
T. Calarco, and E. Neu, Introduction to quantum opti-
mal control for quantum sensing with nitrogen-vacancy

030203-27

https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1109/TAC.2012.2195830
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1088/0953-8984/28/21/213001
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1103/RevModPhys.91.035005
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1103/PhysRevLett.113.043001
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1088/1367-2630/ab8ab3
https://doi.org/10.1103/PhysRevLett.114.100502
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1103/PhysRevLett.114.170501
https://doi.org/10.1088/1367-2630/14/9/093040
https://doi.org/10.1103/PhysRevLett.113.010502
https://doi.org/10.1103/PhysRevLett.89.188301
https://doi.org/10.1103/PhysRevLett.117.170501


BOSCAIN, SIGALOTTI, and SUGNY PRX QUANTUM 2, 030203 (2021)

centers in diamond, AVS Quantum Science 2, 024701
(2020).

[24] T. Schaetz, C. R. Monroe, and T. Esslinger, Focus on
quantum simulation, New J. Phys. 15, 085009 (2013).

[25] P. Doria, T. Calarco, and S. Montangero, Optimal Con-
trol Technique for Many-Body Quantum Dynamics, Phys.
Rev. Lett. 106, 190501 (2011).

[26] D. Liberzon, Calculus of Variations and Optimal Con-
trol Theory (Princeton University Press, Princeton, NJ,
2012).

[27] L. S. Pontryagin, V. Boltianski, R. Gamkrelidze, and
E. Mitchtchenko, The Mathematical Theory of Optimal
Processes (John Wiley and Sons, New York, 1962).

[28] A. A. Agrachev and Y. L. Sachkov, Control Theory From
the Geometric Viewpoint, Encyclopaedia of Mathematical
Sciences Vol. 87 (Springer-Verlag, Berlin, 2004).

[29] A. Agrachev, D. Barilari, and U. Boscain, A Compre-
hensive Introduction to Sub-Riemannian Geometry, Cam-
bridge Studies in Advanced Mathematics Vol. 181 (Cam-
bridge University Press, Cambridge, 2020).

[30] A. Bressan and B. Piccoli, Introduction to the Math-
ematical Theory of Control, AIMS Series on Applied
Mathematics Vol. 2 (American Institute of Mathematical
Sciences (AIMS), Springfield, MO, 2007).

[31] H. Schättler and U. Ledzewicz, Geometric Optimal
Control, Interdisciplinary Applied Mathematics Vol. 38
(Springer, New York, 2012).

[32] U. Boscain and B. Piccoli, Optimal Syntheses for Con-
trol Systems on 2-D Manifolds, Mathématiques & Appli-
cations (Berlin) [Mathematics & Applications] Vol. 43
(Springer-Verlag, Berlin, 2004).

[33] V. Jurdjevic, Geometric Control Theory, Cambridge Stud-
ies in Advanced Mathematics Vol. 52 (Cambridge Univer-
sity Press, Cambridge, 1997), ISBN 0-521-49502-4.

[34] M. M. Lee and L. Markus, Foundations of Optimal Con-
trol Theory (John Wiley and Sons, New York, 1967).

[35] B. Bonnard and D. Sugny, Optimal Control in Space and
Quantum Dynamics (American Institute of Mathematical
Sciences, Springfield, MO, 2012), Vol. 5.

[36] A. E. Bryson and Y. C. Ho, Applied Optimal Control:
Optimization, Estimation, and Control (Taylor and Fran-
cis, Philadelphia, 1975).

[37] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Optimal con-
trol of quantum-mechanical systems: Existence, numer-
ical approximation, and applications, Phys. Rev. A 37,
4950 (1988).

[38] R. Kosloff, S. Rice, P. Gaspard, S. Tersigni, and D. Tannor,
Wavepacket dancing: Achieving chemical selectivity by
shaping light pulses, Chem. Phys. 139, 201 (1989).

[39] S. A. Rice and M. Zhao, Optimal Control of Molecular
Dynamics (John Wiley and Sons, New York, 2000).

[40] J. Somloi, V. A. Kazakov, and D. J. Tannor, Controlled
dissociation of I2 via optical transitions between the X and
B electronic states, Chem. Phys. 172, 85 (1993).

[41] L. Levin, W. Skomorowski, L. Rybak, R. Kosloff, C. P.
Koch, and Z. Amitay, Coherent Control of Bond Making,
Phys. Rev. Lett. 114, 233003 (2015).

[42] D. Sugny, A. Keller, O. Atabek, D. Daems, C. M. Dion,
S. Guérin, and H. Jauslin, Laser control for the optimal
evolution of pure quantum states, Phys. Rev. A 71, 063402
(2005).

[43] S. Conolly, D. Nashimura, and A. Macovski, Optimal
control solutions to the magnetic resonance selective
excitation problem, IEEE Trans. Med. Imag. 5, 106
(1986).

[44] T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, and S. J.
Glaser, Application of optimal control theory to the design
of broadband excitation pulses for high-resolution NMR,
Journal of Magnetic Resonance 163, 8 (2003).

[45] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrueggen,
and S. J. Glaser, Optimal control of coupled spin dynam-
ics: Design of NMR pulse sequences by gradient ascent
algorithms, Journal of Magnetic Resonance 172, 296
(2005).

[46] K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy,
Exploring the limits of broadband 90◦ and 180◦ universal
rotation pulses, Journal of Magnetic Resonance 225, 142
(2012).

[47] D. D’Alessandro and M. Dahleh, Optimal control of two-
level quantum systems, IEEE. Trans. Automat. Contr. 46,
866 (2001).

[48] U. Boscain and P. Mason, Time minimal trajectories for
a spin 1–2 particle in a magnetic field, J. Math. Phys. 47,
062101 (2006).

[49] U. Boscain, T. Chambrion, and G. Charlot, Nonisotropic
3-level quantum systems: complete solutions for mini-
mum time and minimal energy, Discrete Contin. Dyn.
Syst. Ser. B 5, 957 (2005).

[50] U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin, and
H.-R. Jauslin, Optimal control in laser-induced popula-
tion transfer for two- and three-level quantum systems, J.
Math. Phys. 43, 2107 (2002).

[51] A. Garon, S. J. Glaser, and D. Sugny, Time-optimal
control of SU(2) quantum operations, Phys. Rev. A 88,
043422 (2013).

[52] N. Khaneja, R. Brockett, and S. J. Glaser, Time opti-
mal control in spin systems, Phys. Rev. A 63, 032308
(2001).

[53] N. Khaneja, S. J. Glaser, and R. Brockett, Sub-Riemannian
geometry and time optimal control of three spin systems:
Quantum gates and coherence transfer, Phys. Rev. A 65,
032301 (2002).

[54] G. C. Hegerfeldt, Driving at the Quantum Speed Limit:
Optimal Control of a Two-Level System, Phys. Rev. Lett.
111, 260501 (2013).

[55] D. Stefanatos, J. Ruths, and J.-S. Li, Frictionless atom
cooling in harmonic traps: A time-optimal approach, Phys.
Rev. A 82, 063422 (2010).

[56] X. Chen, Y. Ban, and G. C. Hegerfeldt, Time-optimal
quantum control of nonlinear two-level systems, Phys.
Rev. A 94, 023624 (2016).

[57] N. Khaneja, B. Luy, and S. J. Glaser, Boundary of quan-
tum evolution under decoherence, Proceedings of the
National Academy of Sciences 100, 13162 (2003).

[58] S. E. Sklarz, D. J. Tannor, and N. Khaneja, Optimal con-
trol of quantum dissipative dynamics: analytic solution for
cooling the three-level� system, Phys. Rev. A 69, 053408
(2004).

[59] M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. Sugny,
Singular Extremals for the Time-Optimal Control of Dis-
sipative Spin 1/2 Particles, Phys. Rev. Lett. 104, 083001
(2010).

030203-28

https://doi.org/10.1116/5.0006785
https://doi.org/10.1088/1367-2630/15/8/085009
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevA.37.4950
https://doi.org/10.1016/0301-0104(89)90012-8
https://doi.org/10.1016/0301-0104(93)80108-L
https://doi.org/10.1103/PhysRevLett.114.233003
https://doi.org/10.1103/PhysRevA.71.063402
https://doi.org/10.1109/TMI.1986.4307754
https://doi.org/10.1016/S1090-7807(03)00153-8
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2012.09.013
https://doi.org/10.1109/9.928587
https://doi.org/10.1063/1.2203236
https://doi.org/10.1063/1.1465516
https://doi.org/10.1103/PhysRevA.88.043422
https://doi.org/10.1103/PhysRevA.63.032308
https://doi.org/10.1103/PhysRevA.65.032301
https://doi.org/10.1103/PhysRevLett.111.260501
https://doi.org/10.1103/PhysRevA.82.063422
https://doi.org/10.1103/PhysRevA.94.023624
https://doi.org/10.1073/pnas.2134111100
https://doi.org/10.1103/PhysRevA.69.053408
https://doi.org/10.1103/PhysRevLett.104.083001


INTRODUCTION TO THE PMP FOR QUANTUM OPTIMAL CONTROL... PRX QUANTUM 2, 030203 (2021)

[60] B. Bonnard, M. Chyba, and D. Sugny, Time-minimal con-
trol of dissipative two-level quantum systems: the generic
case, IEEE. Trans. Automat. Contr. 54, 2598 (2009).

[61] B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny,
and Y. Zhang, Geometric optimal control of the contrast
imaging problem in nuclear magnetic Resonance, IEEE.
Trans. Automat. Contr. 57, 1957 (2012).

[62] D. Stefanatos, N. Khaneja, and S. J. Glaser, Optimal
control of coupled spins in the presence of longitudi-
nal and transverse relaxation, Phys. Rev. A 69, 022319
(2004).

[63] M. Lapert, E. Assémat, S. J. Glaser, and D. Sugny, Under-
standing the global structure of two-level quantum sys-
tems with relaxation: Vector fields organized through the
magic plane and the steady-state ellipsoid, Phys. Rev. A
88, 033407 (2013).

[64] V. Mukherjee, A. Carlini, A. Mari, T. Caneva, S. Mon-
tangero, T. Calarco, R. Fazio, and V. Giovannetti, Speed-
ing up and slowing down the relaxation of a qubit by
optimal control, Phys. Rev. A 88, 062326 (2013).

[65] D. M. Reich, M. Ndong, and C. P. Koch, Mono-
tonically convergent optimization in quantum control
using Krotov’s method, J. Chem. Phys. 136, 104103
(2012).

[66] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières, A.
Gruslys, S. Schirmer, and T. Schulte-Herbrüggen, Com-
paring, optimizing, and benchmarking quantum-control
algorithms in a unifying programming framework, Phys.
Rev. A 84, 022305 (2011).

[67] S. Machnes, E. Assémat, D. Tannor, and F. K. Wilhelm,
Tunable, Flexible, and Efficient Optimization of Control
Pulses for Practical Qubits, Phys. Rev. Lett. 120, 150401
(2018).

[68] A. Borzì, G. Ciaramella, and M. Sprengel, Formulation
and Numerical Solution of Quantum Control Problems,
Computational Science & Engineering Vol. 16 (Society
for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2017).

[69] U. Boscain, J.-P. Gauthier, F. Rossi, and M. Sigalotti,
Approximate controllability, exact controllability, and
conical eigenvalue intersections for quantum mechanical
systems, Comm. Math. Phys. 333, 1225 (2015).

[70] When not specified differently, we consider in this paper
manifolds without boundary. Recall that the tangent space
TqM at a point q of a smooth manifold M is the vector
space of all the vectors tangent to M at q. The tangent bun-
dle TM is the set of all the tangent spaces at any q ∈ M .
At every point q ∈ M one can also attach the cotangent
space T∗

qM , which is the dual space to TqM . An element
p of T∗

qM is called a covector and is a scalar-valued lin-
ear function on TqM , whose value at a vector v ∈ TqM is
denoted by 〈p , v〉 and referred to as the duality product
between p and v. The collection of the cotangent spaces
at all points of M forms the cotangent bundle T∗M . If M
has dimension n, p ∈ T∗

qM , and v ∈ TqM , in local coordi-
nates, one can think of p as a row vector and v as a column
vector, so that the duality product 〈p , v〉 is equal to pv.

[71] The class of admissible controls is the space U =
L∞([0, T], U), i.e., the space of measurable and essentially
bounded functions from [0, T] to U. Recall that a func-
tion u : [0, T] → U is said to be essentially bounded if

there exists a set ω ⊂ [0, T] of measure zero such that u
is bounded on [0, T] \ ω.

[72] The reason is that a minimizing sequence of piecewise
constant controls may fail to have a cluster point in the
class (intervals on which the control is constant may have
zero duration at the limit). For this reason, optimal con-
trol problems are set for a larger class of controls in which
optimal solutions can be shown to exist (under rather gen-
eral conditions that we discuss in the main text) and can be
characterized through suitable necessary conditions. Such
conditions often allow us to ensure that the optimal con-
trols are indeed piecewise continuous. We should stress,
however, that there exist some examples, such as the
Fuller problem [152], for which the optimal control law
has infinitely many switches between two values of U in
finite time. Such a control law is not piecewise continuous,
but belongs to L∞(0, T, U).

[73] The unique solution q(·) of Eq. (1) is locally Lipschitz
continuous. A locally Lipschitz continuous curve q(·) for
which there exists an admissible control u(·) such that
Eq. (1) is satisfied is said to be an admissible trajectory.
Recall that, given an interval I ⊂ R, a function q : I → M
is said to be Lipschitz continuous if there exists C > 0
such that, for every t1, t2 ∈ I , the distance in M between
q(t1) and q(t2) is at most C|t1 − t2|, while q(·) is said to be
locally Lipschitz continuous if, for every t ∈ I , there exists
ε > 0 such that the restriction of q to I ∩ (t − ε, t + ε) is
Lipschitz continuous.

[74] M. Lapert, R. Tehini, G. Turinici, and D. Sugny, Mono-
tonically convergent optimal control theory of quantum
systems under a nonlinear interaction with the control
field, Phys. Rev. A 78, 023408 (2008).

[75] Y. Ohtsuki and K. Nakagami, Monotonically convergent
algorithms for solving quantum optimal control problems
of a dynamical system nonlinearly interacting with a
control, Phys. Rev. A 77, 033414 (2008).

[76] G. L. Giorgi, A. Saharyan, S. Guérin, D. Sugny, and B.
Bellomo, Microscopic and phenomenological models of
driven systems in structured reservoirs, Phys. Rev. A 101,
012122 (2020).

[77] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University, Oxford, 2002).

[78] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Com-
pletely positive dynamical semigroups of N-level systems,
J. Math. Phys. 17, 821 (1976).

[79] G. Lindblad, On the generators of quantum dynamical
semigroups, Commun. Math. Phys. 48, 119 (1976).

[80] R. Alicki and K. Lendi, Quantum Dynamical Semigroups
(Springer, Berlin, 1987).

[81] S. G. Schirmer and A. I. Solomon, Constraints on relax-
ation rates for N -level quantum systems, Phys. Rev. A 70,
022107 (2004).

[82] S. G. Schirmer, T. Zhang, and J. V. Leahy, Orbits of quan-
tum states and geometry of Bloch vectors for N -level
systems, Journal of Physics A: Mathematical and General
37, 1389 (2004).

[83] Note that even if M is here a manifold with a boundary
∂M , the forward time dynamics is well defined because
the admissible velocities at any point of ∂M are either
directed towards the interior of M or are tangent to ∂M
[153].

030203-29

https://doi.org/10.1109/TAC.2009.2031212
https://doi.org/10.1109/TAC.2012.2195859
https://doi.org/10.1103/PhysRevA.69.022319
https://doi.org/10.1103/PhysRevA.88.033407
https://doi.org/10.1103/PhysRevA.88.062326
https://doi.org/10.1063/1.3691827
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevLett.120.150401
https://doi.org/10.1007/s00220-014-2195-6
https://doi.org/10.1103/PhysRevA.78.023408
https://doi.org/10.1103/PhysRevA.77.033414
https://doi.org/10.1103/PhysRevA.101.012122
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRevA.70.022107
https://doi.org/10.1088/0305-4470/37/4/022


BOSCAIN, SIGALOTTI, and SUGNY PRX QUANTUM 2, 030203 (2021)

[84] Given a manifold M of dimension n, a submanifold of M
of dimension m ≤ n is a subset of M that locally looks like
Rm.

[85] F. Albertini and D. D’Alessandro, Notions of controllabil-
ity for bilinear multilevel quantum systems, IEEE Trans.
Automat. Control 48, 1399 (2003).

[86] S. G. Schirmer, H. Fu, and A. I. Solomon, Complete con-
trollability of quantum systems, Phys. Rev. A 63, 063410
(2001).

[87] C. Altafini, Controllability properties for finite dimen-
sional quantum Markovian master equations, J. Math.
Phys. 44, 2357 (2003).

[88] G. Dirr, U. Helmke, I. Kurniawan, and T. Schulte-
Herbrueggen, Lie-semigroup structures for reachability
and control of open quantum systems: Kossakowski-
Lindblad generators form Lie wedge to Markovian chan-
nels, Rep. Math. Phys. 64, 93 (2009).

[89] Note that this statement can be deduced at once by taking
any converging subsequence of a minimizing sequence.

[90] J. Werschnik and E. K. U. Gross, Quantum optimal control
theory, J. Phys. B 40, 175 (2007).

[91] U. Hohenester, P. K. Rekdal, A. Borzì, and J. Schmied-
mayer, Optimal quantum control of Bose-Einstein con-
densates in magnetic microtraps, Phys. Rev. A 75, 023602
(2007).

[92] U. Boscain and B. Piccoli, in Encyclopedia of Systems and
Control, edited by J. Baillieul and T. Samad, Progr. Math.
(Springer Publishing Company, Incorporated, London,
2015).

[93] U. Boscain, T. Chambrion, and J.-P. Gauthier, On the K
+ P problem for a three-level quantum system: optimality
implies resonance, J. Dyn. Control Syst. 8, 547 (2002).

[94] D. Sugny and C. Kontz, Optimal control of a three-
level quantum system by laser fields plus von Neumann
measurements, Phys. Rev. A 77, 063420 (2008).

[95] N. V. Vitanov, T. Halfmann, B. W. Shore, and K.
Bergmann, Laser-induced population transfer by adiabatic
passage techniques, Annu. Rev. Phys. Chem. 52, 763
(2001).

[96] B. Bonnard and J.-B. Caillau, Metrics with equatorial sin-
gularities on the sphere, Ann. Mat. Pura Appl. (4) 193,
1353 (2014).

[97] V. V. Grusin, On a class of hypoelliptic operators, Mat. Sb.
83, 456 (1970).

[98] R. R. Ernst, G. Bodenhausen, and A. Wokaun, Princi-
ples of Nuclear Magnetic Resonance in One and Two
Dimensions (Clarendon Press, Oxford, 1987).

[99] M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic
Resonance (Wiley, New York, 2008).

[100] U. Boscain and Y. Chitour, Time-optimal synthesis for
left-invariant control systems on SO(3), SIAM J. Control
Optim. 44, 111 (2005).

[101] E. Assémat, M. Lapert, Y. Zhang, M. Braun, S. J. Glaser,
and D. Sugny, Simultaneous time-optimal control of the
inversion of two spin-1/2 particles, Phys. Rev. A 82,
013415 (2010).

[102] P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and I.
Kuprov, Second order gradient ascent pulse engineering,
J. Magn. Reson. 212, 412 (2011).

[103] G. Ciaramella, A. Borzì, G. Dirr, and D. Wachsmuth,
Newton methods for the optimal control of closed quan-
tum spin systems, SIAM J. Sci. Comput. 37, A319 (2015).

[104] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T.
Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S.
Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero,
T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M.
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