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Quantum simulation, one of the most promising applications of a quantum computer, is currently being
explored intensely using the variational quantum eigensolver. The feasibility and performance of this
algorithm depend critically on the form of the wave-function ansatz. Recently in Ref. [Nat. Commun. 10,
3007 (2019)], an algorithm termed ADAPT-VQE was introduced to build system-adapted ansitze with
substantially fewer variational parameters compared to other approaches. This algorithm relies heavily on
a predefined operator pool with which it builds the ansatz. However, Ref. [Nat. Commun. 10, 3007 (2019)]
did not provide a prescription for how to select the pool, how many operators it must contain, or whether
the resulting ansatz will succeed in converging to the ground state. In addition, the pool used in that work
leads to state-preparation circuits that are too deep for a practical application on near-term devices. Here,
we address all these key outstanding issues of the algorithm. We present a hardware-efficient variant of
ADAPT-VQE that drastically reduces circuit depths using an operator pool that is guaranteed to contain
the operators necessary to construct exact ansétze. Moreover, we show that the minimal pool size that
achieves this scales linearly with the number of qubits. Through numerical simulations on Hy, LiH and
Hg, we show that our algorithm (“qubit-ADAPT”) reduces the circuit depth by an order of magnitude while
maintaining the same accuracy as the original ADAPT-VQE. A central result of our approach is that the
additional measurement overhead of qubit-ADAPT compared to fixed-ansatz variational algorithms scales
only linearly with the number of qubits. Our work provides a crucial step forward in running algorithms

on near-term quantum devices.
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I. INTRODUCTION

Finding the ground state of a many-body interacting
electronic Hamiltonian is one of the most important prob-
lems in modern quantum chemistry and physics. As the
dimension of the Hamiltonian scales exponentially with
the number of particles, accurate classical simulations
can only be performed for systems with few electrons.
Although many classical computational techniques have
been developed to approximate the ground electronic
state, no classical method is available that can perform
accurately for arbitrary systems with polynomial effort.
While density-functional theory (DFT) [1,2] has been
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tremendously useful for unraveling the microscopic details
of weakly correlated molecules and materials, the most
accurate form (Kohn-Sham DFT [1]) relies on a single
Slater determinant wave function, which fails to describe
strong correlation with current functionals. Unlike DFT,
whose accuracy relies on a density functional, which is
not able to be systematically improved, wave-function-
based methods such as configuration interaction (CI) or
coupled cluster (CC) can be used to describe many-body
systems with clear paths to arbitrary accuracy. However,
in the presence of strong correlation such methods incur
an exponential computational cost due to the large number
of Slater determinants involved. Alternatively, methods
based on tensor network states [3—7] (most notably den-
sity matrix renormalization group [8—10]) can exploit rank
sparsity in low-energy states of one-dimensional systems
to simulate strongly correlated systems, with polynomial
cost. This polynomial scaling is lost in higher dimensions,
and the computational cost again grows exponentially. A
radically different approach is Feynman’s proposal to study
quantum systems using quantum computers [11]. Recent
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reviews provide a comprehensive background and discuss
new developments in quantum simulation with quantum
computers [12—14].

The long-term method for simulating chemical systems
with quantum computers is the quantum phase estima-
tion algorithm (PEA) [15,16], which shows an exponen-
tial speedup over classical algorithms [17,18]. Since the
number of gates, i.e., unitary operations, involved in this
algorithm is very large, it requires a long coherent evolu-
tion, which can only be realized in fault-tolerant quantum
computers [19]. These scalable, error-correcting devices
may take decades to realize experimentally. In the mean-
time, the community is exploring algorithms that can be
applied to existing and near-term processors, namely noisy
intermediate-scale quantum (NISQ) devices [19].

A promising algorithm for NISQ hardware is the vari-
ational quantum eigensolver (VQE) [20,21]. VQE is
a hybrid method that combines classical computational
power with a quantum processor. Based on the variational
principle in quantum physics, the VQE algorithm con-
structs a trial wave function by applying gates on a quan-
tum device and estimates the average energy by measuring
the Hamiltonian on that device. This measured energy is
then minimized by tuning the quantum circuit. The cir-
cuit parameter optimization is performed by a classical
computer, and quantum resources are only used for the
classically intractable parts (state preparation and energy
evaluation) of the calculation. Compared to PEA, VQE has
much more modest requirements on the coherence times
of the quantum processor, and it has already been realized
on NISQ devices, such as superconducting qubits [22,23],
photons [20], and trapped ions [24,25]. The accuracy of
VQE is highly dependent on the explicit form of the wave-
function ansatz and can only obtain the exact ground-state
energy if the ansatz is capable of representing any state in
the subspace that contains the ground state. For example,
if symmetries of the ground state are known, then one can
construct an ansatz that represents any state in the corre-
sponding symmetry subspace [26], guaranteeing that the
exact ground state can be expressed in terms of the ansatz.

One of the commonly used ansitze for VQE is uni-
tary coupled-cluster singles and doubles (UCCSD) [27,
28]. Stemming from the coupled cluster theory used in
chemistry, this unitary version is more suitable for quan-
tum circuit implementation. The “singles and doubles” in
UCCSD means only single and double excitation operators
are included in the ansatz, each carrying its own variational
parameter. One drawback of UCCSD is that including
all the singles and doubles operators leads to a (poten-
tially unnecessarily) deep circuit and a large number of
parameters to optimize. To reduce this complexity, several
alternatives have been proposed, which attempt to keep
only the most important operators [29—36]. A second draw-
back is that UCCSD is also generally not exact and suffers
from ambiguities in operator ordering upon factorization

into a product of exponentiated operators (Trotterization),
which is a necessary step in converting the ansatz to a state-
preparation circuit [37,38]. Another approach to building
the ansatz is to use the most accessible gates in the quan-
tum device, alternating single-qubit gates and two-qubit
gates layer by layer. This is referred to as a hardware-
efficient ansatz [23]. Although this approach lessens the
demands on the quantum processor, the resulting wave-
function ansatz can lead to difficulties in parameter opti-
mization [39]. This problem was addressed by constructing
particle-conserving entangling gates instead of ordinary
two-qubit gates [40,41] and symmetry-preserving circuits
[26]. While these fixed-ansatz approaches can be applied
to any problem and can reduce the number of varia-
tional parameters and circuit depths, further improvement
may still be possible by tailoring the ansatz to a given
simulation problem.

Recently, a new algorithm that provides a systematic
method to build an ansatz dynamically was introduced.
This algorithm, termed adaptive derivative assembled
pseudo-Trotter (ADAPT) VQE [29], employs a predeter-
mined pool of operators from which the ansatz is dynami-
cally constructed. ADAPT-VQE differs substantially from
approaches based on compiling fixed circuits. Instead, the
ansatz is grown iteratively, such that at each step, the
operator that affects the energy the most is added to the
ansatz. Using fermionic operators as a pool, Ref. [29]
demonstrated that ADAPT-VQE substantially outperforms
UCCSD, in terms of both number of variational parame-
ters and accuracy. This result demonstrates the promise of
the ADAPT algorithm. However, due to the gate overhead
of the fermion-to-spin mapping, the operators considered
in Ref. [29] translate to a fairly large number of quantum
gates, and, therefore, while the number of parameters is
very low, the circuit depth (which is significantly reduced
compared to UCCSD) may still be impractically large, lim-
iting the applicability of ADAPT-VQE to NISQ devices.
Even more importantly, it is not clear (i) how the operator
pool should be chosen in general, (ii)) how many operators
it should contain, and (iii) what guarantees that the pool
is complete, i.e., that it enables convergence to the ground
state.

In this paper, we address these issues by introduc-
ing qubit-ADAPT-VQE, an algorithm that substantially
reduces both the number of measurements and the cir-
cuit depths needed to achieve convergence. We term this
algorithm qubit-adaptive derivative assembled problem-
tailored (qubit-ADAPT) VQE, in contrast to the imple-
mentation in Ref. [29], which we refer to as fermionic-
ADAPT in this paper. Through classical simulations of
several different molecules, we demonstrate that compared
to fermionic-ADAPT, qubit-ADAPT reduces the circuit
depth by an order of magnitude while maintaining the
same accuracy. This compactness of qubit-ADAPT and
its iteratively grown ansatz are expected to reduce the
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risk of barren platacus. Moreover, we introduce a pool
completeness criterion that determines whether a given
pool will generate an exact ADAPT ansatz. We prove that
the minimal number of pool operators that satisfy this con-
dition grows linearly with the number of qubits. This is
much smaller than the quartic scaling originally assumed
in fermionic-ADAPT, and it demonstrates that the addi-
tional measurement overhead of ADAPT-VQE remains
modest for larger systems (increasing only linearly over
conventional, fixed-ansatz VQEs). Our results pave the
way toward both practical and accurate VQE algorithms
on NISQ devices.

This paper is organized as follows. First, we briefly
review fermionic-ADAPT and estimate the corresponding
circuit depth in Sec. II. In Sec. III, we introduce qubit-
ADAPT and provide a detailed description of the opera-
tor pool. In Sec. Il A, we compare the performance of
qubit-ADAPT and fermionic-ADAPT through numerical
simulations of Hy, LiH, and H¢ molecules. We show that
the minimal size of the operator pool for qubit-ADAPT
scales linearly in the number of qubits in Sec. III B. We
conclude in Sec. IV. Details of the estimate for the circuit
depth of fermionic-ADAPT and a constructive proof of the
linear scaling of minimal complete pools are included in
appendices.

I1. CIRCUIT DEPTH ESTIMATE FOR
FERMIONIC-ADAPT

The ADAPT ansatz is grown by one operator %; = —f;
at each iteration, and after the nth iteration is given by
‘wADAPT(§)> — eekfk o e92f2691f1 |]//HF) , (1)

where |} is the HF state. These operators are selected
from an operator pool defined upfront. At each iteration,
the operator, which induces the maximum change to the
energy, is selected. This energy response is represented by
the gradient of the energy with respect to the corresponding
parameter, i.e.,

0

8_0,»<E> = (YI[H, Tl 1Y), 2)

which can be measured on the quantum device. The ansatz
keeps growing until the norm of the gradient vector,

)

is zero or, in practice, smaller than a chosen threshold,
€. Compared to ordinary VQE, ADAPT-VQE requires
additional measurements to obtain the gradient at each iter-
ation; the number of these measurements is roughly equal

to the size of the pool times the number of terms in the
Hamiltonian [42], although the number of measurements
needed to compute the mean energy can be decreased using
recently developed techniques [43].

In order to attain a compact circuit for the ADAPT
ansatz, we want to minimize both the number of param-
eters and the circuit depth. While the first requirement
can be satisfied by the general structure of the ADAPT-
VQE algorithm, the second one is not guaranteed and
depends on the chosen pool. Using fermionic operators, a
parameter-efficient operator pool can be constructed from
spin-adapted single excitation operators:

T o 1)y (M + ) (Vlp —hec,, “

and double excitation operators:

f2,T X |Ta 1>pq <Ta 1|rs + |T9 _1>pq (Ta _1|rS
+ |T90>pq (T50|rs_h'c" (5)
‘L’:z’s X |S, O>pq (S,0|,,S — h.C.,

where a,b,p,q,r,s are spatial orbitals and T, S refer to
triplets and singlets formed by p, g or r,s. To implement
ADAPT-VQE on qubits, we have to map these fermionic
operators to Pauli operators, which has the consequence
that a parameter-efficient pool is most likely not gate-
efficient. In this paper, we employ the Jordan-Wigner (JW)
mapping, i.e., a; —> ]_[;_:l()Zj()(i —iY;), although other
mappings [44—46] could be used instead.

In the JW mapping, a double excitation operator may
contain more than one fermionic operator a; aj,a,as —h.c.,
which is transformed into at most eight Pauli strings. (A
product of four fermionic operators gives 16 terms in total,
but each symmetric term is cancelled by its Hermitian con-
jugate [35].) These excitation operators conserve S2, S.
and particle number by summing a number of Pauli strings
together, which results in a high gate count per excitation
operator.

In order to make a rough estimate of the number of
CNOT gates involved in one operator from the fermionic
pool, we consider the generalized singles-doubles exci-
tation fermionic pool. “Generalized” indicates that the
excitations are not restricted to occur only from occupied
to virtual orbitals. Rather, all combinations of excitations
are included. To obtain the gate count, we perform first-
order Trotterization of each unitary, i.e., it ]_[j et
where P; are the Pauli strings appearing in 7; after the
JW mapping. For simplicity, we assume only double
excitation operators are picked by the algorithm, which
makes this a conservative estimate as any single excita-
tion included would result in a smaller CNOT-to-parameter
count ratio. The number of CNOTs needed for a single
Pauli string P; with length ¢ is 2(qg — 1) [48]. Here, the
length ¢ is the number of nonidentity Pauli operators in
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the string. The average number of CNOTs involved in a
spin-adapted double excitation operator is approximately
Npauii (6 + 2N7) Ngpin, Where Npyyi is the average number

of Pauli strings in a doubles operator a;a:;aras —h.c., Ny
is the average number of Pauli Z’s in a Pauli string due to
the anticommutation relation of fermionic operators, and
Nspin is the average number of doubles operators summed
in a spin-adapted operator [Eq. (5)]. By Appendix A, these
quantities are given by

_ 8m(Sm —17)
Npyj = —————, 6
Pauli m(5m—1)—8 ()
_ 12m3 — 30m? + 34m — 20
Ny = , 7
‘ 3(5m% —m — 8) )
_ Sm?:—m—38
spin = W’ (8

where m is the number of spatial orbitals. For large m,
the number of CNOTs in a spin-adapted doubles operator
is approximately 64m.

II1. QUBIT-ADAPT

Because the spin-adapted fermionic operators each
introduce a large number of CNOTs into the state-
preparation circuit, we are motivated to construct a new
pool consisting of operators that involve fewer CNOTs.
One way is to break down the spin-adapted fermionic
operators after the JW mapping and choose the individ-
ual Pauli strings as the operator pool T = P = i [Lpipi €
{X, Y, Z}. This more hardware-efficient choice effectively
reduces Nspin and Npayi to 1, while it contains the same
basic elements as the spin-adapted fermionic pool. An
important property of this qubit pool is that it contains
only Pauli strings with odd numbers of Y’s because the
fermionic operators are real, hence P = i [ 1, p: has to be
real. We refer to these as “odd” Pauli strings. The remain-
ing “even” Pauli strings have no effect on the energy. This
is because H is symmetric (time-reversal symmetry is pre-
served), and so the expectation value of the commutator
in Eq. (2) will vanish for real |y) if 7; is symmetric (i.e.,
even). We can therefore restrict 7; to the odd Pauli strings,
which are antisymmetric. Using such operators in the pool
also ensures that the ansatz remains real throughout the
qubit-ADAPT algorithm, which should be the case when
H is time-reversal symmetric. The length of these strings
ranges from 2 to n due to the Pauli-Z chain responsi-
ble for the fermionic anticommutation relation. To further
reduce gate depth, we remove these Pauli-Z chains from
the operators. Numerically, we find that these two pools
(with and without Z chains) perform similarly. The fact
that qubit-ADAPT does not require the Z chains in order
to achieve convergence suggests that this algorithm avoids
issues related to the long-range correlations inherent in the

JW mapping. The pool without Z chains gives Pauli strings
with maximum length 4. The size of this pool is much
smaller than the full set of Pauli strings with maximum
length 4, as we only pick operators that already appear
in the fermionic pool, which are capable of transforming
| 1) to the ground state. We refer to this reduced pool
as the “qubit pool”. Below, we demonstrate that this pool
produces significantly shallower state preparation circuits
compared to fermionic-ADAPT. We also show that the size
of the qubit pool can be reduced dramatically down to a
size that scales only linearly in the number of qubits, which
substantially cuts down on the number of measurements
needed to run qubit-ADAPT.

A. Numerical simulations

We compare the performance of the qubit pool to the
fermionic pool in terms of the number of parameters and
the number of CNOTs for different molecules, Hy, LiH, and
Hg (Fig. 1). In each case, we choose a bond distance such
that correlation effects are significant: » = 1.5 A for Hy
and Hg, and r = 2 A for LiH. All the calculations are per-
formed using an STO-3G basis and start from restricted
Hartree-Fock orbitals without using a frozen-core approx-
imation such that we have eight spin orbitals for H4 and
12 spin orbitals for each of the other two molecules. All
CNOT gate counts are obtained using the qiskit command
count_ops, where we consider the case of all-to-all qubit
connectivity for concreteness. Although these counts will
increase as the connectivity is reduced, we do not expect
the relative performance of the two algorithms to change
significantly. In the case of fermionic-ADAPT, we show
gate counts before and after transpilation is used. The
counts before transpilation agree well with the estimates
obtained in Appendix A.

It is evident from Fig. 1 that in the case of the qubit
pool, more parameters are used compared to the fermionic
pool. On the other hand, the number of CNOTs is reduced
significantly, by about an order of magnitude in the case
of Hg. Switching from the fermionic pool to the qubit
pool increases the number of parameters in the ansatz,
which is the price for compressing the circuit depth. How-
ever, the increase in parameter number increases only the
required classical computational power during the clas-
sical optimization, while the decrease in circuit depth
reduces the demands on the quantum processor. For NISQ
devices, the number of CNOTs that can be implemented
within the coherence time is very limited, so the ability
of qubit-ADAPT to divert more of the computational cost
away from the quantum processor and onto the classical
optimizer should be advantageous overall.

To evaluate the effectiveness of using the gradient as
a means to grow the ADAPT ansatz, we compare the
performance of qubit-ADAPT with random operator
orderings drawn from the same qubit pool. In Fig. 2, we
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FIG. 1. Ground-state energy difference between ADAPT and the exact (FCI) result for (a),(d) Hy at bond distance 1.5 A, (b),(e)
LiH at bond distance 2 A, and (c),(f) Hg at bond distance 1.5 A. The bond distances are chosen to ensure that correlation effects are
substantial. All the calculations are performed using an STO-3G basis and start from restricted Hartree-Fock orbitals without using a
frozen-core approximation such that we have eight spin orbitals for Hy, 12 spin orbitals for LiH, and 12 spin orbitals for He¢. Results
are shown for qubit-ADAPT (blue), fermionic-ADAPT (orange), and transpiled fermionic-ADAPT (green). (a)-(c) Energy difference
as a function of ADAPT iterations (which is equal to the number of variational parameters). (d)«f) Energy difference as a function
of the number of CNOTs in the corresponding state-preparation circuit. All CNOT gate counts are obtained using the qiskit command
count_ops. The transpiled counts are obtained using qgiskit.transpile [47] with heavy optimization, which includes canceling back-
to-back CNOTs and “commutative cancellation” (see Supplementary Material [56] for the code). Although qubit-ADAPT requires more
variational parameters, it entails significantly fewer CNOTs compared to fermionic-ADAPT.

see that qubit-ADAPT always converges much faster than
the random orderings for both H4 and LiH. When random
orderings are used for Hy, convergence to the ground state
requires 46—78 parameters, compared to only 30 param-
eters for qubit-ADAPT. In the case of LiH, the random
orderings require more than 3 times as many parameters
as qubit-ADAPT to converge. We can provide only a lower
bound on the number of parameters needed to converge the
random-ordering results in Fig. 2(b) due to the long com-
putational times needed in this case. These findings suggest
that the role of the gradient selection in qubit-ADAPT is
crucial for larger problems.

These findings suggest that qubit-ADAPT will likely
avoid issues with barren plateaus. Studies of barren
plateaus have revealed that circuit depth plays a key role
[39,49], indicating that qubit-ADAPT-VQE may avoid

this issue due to the compactness of the ansétze it pro-
duces. In fact, there are two recent papers that follow
similar strategies as ADAPT-VQE, and which demon-
strate that variable ansétze are much more resilient to
barren plateaus. One of these works, the so-called lay-
erwise learning, grows the ansatz by adding layers with
fixed operator structure, thus optimizing the parameters
gradually [50]. Similar conclusions were also drawn in
Ref. [51]. The features that protect against barren plateaus
in these works are also naturally present in the qubit-
ADAPT-VQE ansatz-growth strategy. Additionally, it has
been demonstrated that correlating random parameters in
the ansatz can also prevent barren plateaus [52]. Again,
we expect that qubit-ADAPT-VQE may also have this
feature since the parameters of the ansatz at each layer are
related to the parameters in the previous iteration. More
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FIG. 2. Energy error of qubit-ADAPT versus ansétze with ran-
dom operator orderings as a function of the number of iterations
for (a) Hy and (b) LiH. The qubit pool is used in all cases, and
the orbital bases and bond distances are chosen as in Fig. 1.

generally, barren plateaus are believed to arise because
the parameterized ansatz has too much expressivity in the
space of unitaries. Since qubit-ADAPT-VQE is problem
tailored, each ansatz is only intended to be used for a sin-
gle Hamiltonian. This is unlike the “hardware-efficient”
approach where one ansatz is intended to solve multi-
ple Hamiltonians. In this way, the ansétze resulting from
qubit-ADAPT-VQE have lower expressivity and thus less
susceptibility to barren plateaus.

Figure 3 shows that the performance of qubit-ADAPT
remains essentially the same across different bond dis-
tances. Results are shown for LiH, where the bond distance
is varied from 1 to 3 A. The fact that the curves cor-
responding to different bond lengths largely overlap one
another shows that the rate of convergence does not change
significantly. Because the amount of correlation in the
ground state depends on the bond distance (more cor-
relations tend to arise as the bonds are stretched), this
suggests that the convergence of qubit-ADAPT is not sen-
sitive to the strength of correlations. This finding indicates
that qubit-ADAPT is a promising approach to studying
strongly correlated systems.

B. Operator pool reduction

So far, a drawback of the qubit pool is its large size
compared to the fermionic pool, which in turn leads to

(@) 10
1073
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Energy error (Hartree)

0 25 50 75 100 125 150 175
ADAPT iteration number

_
(=2
-

—— qubit-ADAPT
—— ADAPT transpiled
—— ADAPT
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Number of cnoTs

X
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Bond distancec (A)

FIG. 3. qubit-ADAPT and fermionic-ADAPT energy error of
LiH for various bond distances. The bond distance varies from
1 to 3 A with darker curves in (a), (b) corresponding to larger
bond distance. The energy error is plotted against (a) the number
of parameters and (b) the number of CNOTs. The performance
remains similar across different bond lengths and hence across
different amounts of correlation in the ground state. The orbital
basis used is the same as in Fig. 1. (c) The final energies obtained
by qubit-ADAPT (points marked by x) for each bond distance
considered are plotted along with the exact ground-state energies
(solid curve).

proportionally more measurements at each iteration. Even
though the qubit pool is defined from the fermionic pool,
which is a small subset of the full Pauli group, the pool size
grows quickly with the number of orbitals. However, many
of these operators are redundant in the sense that eliminat-
ing them has no effect on the convergence of the algorithm.
For example, there are pairs of operators that are related by
a global rotation, e.g., Xo Y1 Y2 Y3 and Yo X1 X, X3, so we need
only to keep one of them in the pool; discarding the other
does not have any significant effect on the performance of
qubit-ADAPT.
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The redundancy in the pool can be illustrated by remov-
ing randomly selected operators from the pool and mon-
itoring the impact on convergence. First we randomly
remove 3/4 of the operators in the pool. As shown in
Fig. 4, despite this large reduction of the pool size, the
performance of the algorithm is similar to that with the
original pool. However, as is also evident in Fig. 4, if
we further remove more operators, the pool is some-
times incomplete, and the energy may not converge to
the ground-state energy. We can understand the tolerance
of the algorithm to the drastic reduction of the pool by
studying the Hilbert space spanned by the pool operators.

Starting from the expression for ‘WADAPT (§)> in Eq. 1 and

using the Baker-Campbell-Hausdorff formula repeatedly,
we obtain

‘wADAPT (§)> — oXididi

yHr), )

where the 4; include all the pool operators and their com-
mutators, and the ¢; are functions of 6. Therefore, the
Hilbert space spanned by the pool is determined by the
set {4;}. Note that if the original pool is comprised of odd
Pauli strings, then so is {4;}. If the operators in {4;} can
transform the reference state to any real state in the n-qubit
Hilbert space, then the qubit-ADAPT ansatz is guaranteed
to be exact, and it is capable of converging to the ground
state. (Here, the only symmetry we impose is time rever-
sal.) Note that if {4;} includes all the odd Pauli strings
[of which there are 2"~'(2" — 1), which scales exponen-
tially with the number of qubits], then we could create an
arbitrary orthogonal transformation in Eq. (9). However,
spanning the Hilbert space requires only a subset of the
odd Pauli strings, because only 2" — 1 real parameters are
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FIG. 4. qubit-ADAPT energy error of Hy using the full qubit
pool, and randomly chosen 1/4, 1/16, and 1/32 pools are plotted
against the number of iterations. For the 1/4 and 1/16 pools, the
algorithm can converge for almost every run. For the 1/32 pool,
most of the runs can reach only an energy error of 1073, The
orbital basis and bond distance are chosen as in Fig. 1.

required to create an arbitrary real state. In particular, we
need {4;} to be such that for an arbitrary state |1), the states
A; |v) form a complete basis. In this case, we refer to {4;}
as a complete basis of operators.

The problem then is to determine the minimal pools that
produce a complete basis of operators. For a given pool,
we define the overlap matrix as M;; = (Y| A,TA i 1Y) where
[r) is an arbitrary real state. If the rank of M satisfies
r(M) > 2" — 1, this pool is called complete. To determine
the smallest complete pools, we randomly generate many
different pools of increasing size and compute #(M) in each
case to test for completeness. We did this for up to seven
qubits. Our numerical investigations reveal that, surpris-
ingly, the minimal pool size required for the overlap matrix
to have the required rank of 2" — 1 is only 2n — 2. This is
evident in Fig. 5, which shows the fraction of pools that
are complete for various pool sizes and numbers of qubits.
In each case, complete pools are found for pool sizes that
contain at least 2n — 2 operators. Note that not only is this
much smaller than the Hilbert space, it is also much smaller
than the size of the fermionic pool, which scales like *.

Randomly selecting pools of size 2n — 2 and testing
for completeness by computing (M) is a numerically
intensive process that quickly becomes infeasible as the
number of qubits increases. This is further exacerbated
by the fact that the fraction of complete pools of size
2n — 2 becomes smaller as n increases, as is evident in
Fig. 5, which raises the question of whether complete
pools of size 2n — 2 even exist for large values of n.
In Appendix B, we prove analytically using induction
that complete pools of size 2n — 2 exist for any n. In
fact, the proof is constructive: We present two families of
minimal pools that are provably complete for any num-
ber of qubits. One of these pools, which we call {V;},
wherej =1,...,2n — 2, is defined recursively as {V;}, =
{(Z,{Vitn-1,iYy,iYy—1}, starting from the pool for n =2
qubits: {V;}, = {iZ,Y;,iY>}. This pool is comprised of
generators for single-qubit Y rotations and conditional Y

3

e o o =
> o ® o

©
N

Complete pools (fraction)

e
o
F

0 2 4 6 8 10 12
Number of operators in pool

FIG. 5. The fraction of pools that are complete as a function
of pool size for two (blue circles), three (yellow squares), four
(green diamonds), and five (red triangles) qubits.
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rotations, and it contains operators that act on up to all
n qubits. In Appendix B, we prove that these operators
are sufficient to rotate any real state to any other real
state in the Hilbert space. As shown in Appendix C, {V}},
can be mapped to a second family of minimal complete
pools, which we call {G;},, that has a very local struc-
ture. This pool contains all two-qubit operators of the form
iZr4+1Y; that act on two neighboring qubits labeled by &
and k + 1. There are n — 1 such operators. {G; }, also con-
tains all single-qubit Pauli iY operators except on the first
qubit. Therefore, this pool contains 2n — 2 operators. In
Appendix C, we show that the G; can be obtained from
commutators of the V; for any n, and so the completeness
of the former follows from that of the latter.

Energy (arbitrary units)

1078

—_
(=)
N

Energy (arbitrary units)

1078

_
(2]
N

Energy (arbitrary units)
o

incomplete \! \
{Vjtn |
107 {Gj}n
other min complete
1078 1— . . ; . . .
0 5 10 15 20 25 30
ADAPT iteration number
FIG. 6. Energy error curves for three different kinds of mini-

mal complete pools versus incomplete pools. Results for three,
four, and five-qubit random Hamiltonians are shown in (a), (b),
and (c), respectively.

To investigate the importance of the pool being com-
plete, we run qubit-ADAPT for random real Hamiltonians
of three, four, and five qubits with random initial states and
for pools consisting of 2n — 2 operators randomly chosen
from the set of odd Pauli strings. We also run simulations
using the minimal complete pools {V;}, and {G;},. The
operator coefficients in each Hamiltonian (which is taken
to be real and symmetric) are obtained by sampling uni-
formly in the range [—2, 2] with ten samples for each of
these three cases. The corresponding energy error curves
are illustrated in Fig. 6. Each curve is the result for a dif-
ferent random Hamiltonian. All of the curves that fail to
converge correspond to incomplete pools. For these cases,
even though the gradient goes to zero the ground state is
not reached because important operators are never gen-
erated. On the other hand, the runs with complete pools
always converge, highlighting the importance of this cri-
terion. For the cases considered, we find that 20%—40%
of pools containing 2n — 2 operators are complete. These
findings shed light on the question of what constitutes a
good operator pool for ADAPT-VQE. These points were
not appreciated in the original paper [29], and moreover,
they suggest that the fermionic pool used in that work is
overcomplete. Furthermore, the fact that the minimal pool
size is linearly proportional to #» means that the number
of additional measurements needed for each step of qubit-
ADAPT is also linear in n. Thus, the extra measurement
overhead of qubit-ADAPT remains modest as the problem
size increases.

IV. CONCLUSIONS

In conclusion, we introduce a more efficient and NISQ-
compatible version of the ADAPT-VQE algorithm, called
qubit-ADAPT. The basic idea of qubit-ADAPT is to use a
pool consisting of Pauli strings (rather than fermionic oper-
ators) so that the number of CNOT gates associated with
each pool operator is reduced. We establish a completeness
condition that guarantees that a pool will generate an exact
ADAPT ansatz, and we prove that the smallest possible
pool that obeys this criterion scales linearly with the num-
ber of qubits. We also provide a constructive approach to
generating minimal complete pools for an arbitrary num-
ber of qubits. These results remove the ad hoc elements of
the ADAPT algorithm and lead to a substantial reduction
in the depths of state-preparation circuits and in the number
of measurements needed to run ADAPT-VQE on realistic
hardware.
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APPENDIX A: cNOT ESTIMATION

From the structure of the pool operators, we can try
estimating the number of CNOT gates as a function of
the number of variational parameters. These estimates are
described below.

1. Qubit-ADAPT

In order to get a conservative estimate on the CNOT
count, we assume that all operators picked are four-qubit
Pauli strings, since exponentiating an n-qubit Pauli string

requires 2(n — 1) CNOT gates, the number of CNOT gates is
NCNOT - 6 (Al)

J

_ Totalno.offermionicterms (aZ agaras)

spin

_ Total number of Pauli strings after JW

~ Total spin adapted double ops in pool

Pauli = —
aut Total fermionic terms

_ TotallengthofPauliZfromallfermionic
Nz = —
Total no. of fermionic terms

To compute these total counts, we can first classify the
combination of spatial orbitals into five groups:

Lp#q#r#s.
2. One of p,g =one of r, s.
3. p=q#r#s.
4. p=qg=r#s.
S5.p=q#r=s.

Since some of them can have both triplet and singlet
while the others can only have singlet. And the number
of fermionic terms in spin-adapted grouping also depends
on the combination of spatial orbitals.

For group 1, the triplet operator reads as

fZ,T X |Tz 1>pq (Ta 1|rs + |T,_1>pq (T, _1|rs
+1T,0),, (T, 0l,, — hec.

1
= lpg) (sl + 5 (Ipq) + Ipg)) ({rs| + {7s])
+ |pg) (rs] —h.c.

1/ . +
i Bl 95 5 SO %
— a,a,0,d + > (apaqaras + a,a;ards

t ot it t 1
+ aﬁaj]a,ﬂag + aﬁaqa;as> + a;azaza5 — h.c.,

2. Fermionic-ADAPT

In the case of fermionic-ADAPT, the number of CNOTs
used can be estimated as

NCNOT = (6 +2x NZ) X NPauli X Nspin, (AZ)

where N is the average number of Pauli Z used for fix-

ing the antimsymmetry of fermionic operators, Ngin is

the average number of fermionic operators in each spin-

adapted group and Np,y; is the average number of Pauli
strings from each fermionic operator.

= no. of fermionic terms in a spin adapted op,

= no. of Pauli strings from each fermionic term, (A3)

= increases the length of Pauli strings.

(

so there are six terms in total (12 terms including Hermitian
conjugate). For the singlet,

£2.5 0 IS, 00, (S, 0], — h.c,

1
=5 (pq) — Ipg) ({rs| — {rsl) — h.c.

1/ .+
I PR 1T
— 2( ), a5a,d5 — A,y

— h.c.,

i +
azaras — a; a;arag + al—,aZ;a;aS

so there are four terms in total (eight terms including Her-
mitian conjugate). For group 2, the triplet operator reads as
(forg =r)

"

. 1 .
~ T T f - Tt
To,7 = 4,0,040s + (apa(-laqas + a,az;azas

2
+ a;a;aqag + a; a;a(—,as)

A
+ aﬁaj-]aqag —h.c.,
while the singlet operator is

1/ .
A Il % I SRR (S SN i SR
g — Z(apaqaqas a,a50505 — A5A,0405

+ a;a;agas> —hec.
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For group 3, there is only singlet

1 +
> f to1 T
T — 3 (a;aﬁarag — a,azazas — aﬁa; a,ds

+ a;a;a;as) —h.c.

a,a; + a;afa;as — h.c.

I -
=4a,4; P

P

For group 4, there is only singlet

R 1
Ty5 —> §<a;a;apa§ — a;a;aﬁas — a;-:a;apag
T 4
+ aﬁa}La,;as) —h.c.
=a ala,a; + a'd aza;, —h.c
T pTpTPTS pPpTPTS T
For group 5, there is only singlet
LY ot ot
Ty5 —> 3 (apaﬁa,a; — a,a;a;a, — a;a,a,a;
+ a;a;a;a,.) —h.c.
= 2a;a;ara; —h.c..

Then we can perform Jordan-Wigner transformation to

each of these terms. Each anti-Hermitian pair of fermionic
operators having four different indices, i.e., aj- a;akal —

h.c., would result in eight Pauli strings, i.e.,

Tt
a;a;ara; — h.c.

= 20 [T 0 (1 XX + X0, XX — XX, Vi — XX, XY,
— XY YY) = Y XY + VY XY+ Vi, V).
The other case is two of the four indices are the same,

1

alalaja —he. = [ | Z,X; +i¥)Z (X — iY)) — he.

n

only two Pauli strings left. From the expression of the
five cases’ fermionic operators, we can then determine the
average number of Pauli strings per anti-Hermitian pair for
each case.

For the length of Pauli Z, it is equivalent to count the
interval between i and j and between k and [ wherei <j <
k < I, we calculate them for separate cases, for m spatial
orbitals,

l.p#q#r#s:

The total number of Pauli Z is given by the sum

%(;) x (6 +4)

D>

m| <mp<m3z<my

[(2m4 — 2y — 1)(2my — 2my — 1)]
m 4 3 2
= 2 @m* — 15’ + 400" — 45m +18).

The prefactor % 2) is counting the ways we choose two

of {p,q,r,s} to be in the dagger side, while the prefactor
(6 + 4) is from the number of fermionic operators for each
combination. If we have {i,j,k, [} = {1,2,3,4}, which is
in group 5, the Jordan-Wigner transformation would bring
a Pauli-Z chain Z,Z,7Z; for the creation and annihilation
operator on index 4 and a Pauli-Z chain Z;Z, for oper-
ator on index 3, so only Z; can survive, but it would
combine with the X3 & iY; from the operator on index 3,
so there is no Pauli Zs effectively. Therefore, we should
count the number of integers can be fitted in the intervals
2my4 — 2m3 and 2m, — 2my, that explains the terms —1 in
the calculation.

In this counting, we treat all the spin orbitals to be
spin up (even number indices) even though each term in
|T,0)(T,0] and |S,0) (S, 0| has two spin-down and two
spin-up operators. It is because whenever there are terms
with both spin-up and spin-down spin orbitals, there would
be another term with the spin totally flipped, so the count-
ing of these two terms would cancel each other. For exam-
ple, consider p < g <r < s, the |T,0) (T,0| terms read
as % (a;a;arag + a;aga;as + a}:ajiarag + a;aj,a;as) —h.c,,
the first term and the last term are different by a total
spin flip, the number of Pauli Z would be 25+ 1 —
2r—1+2g+1—-2p—1and 2s — (2r+1)—1+4+2q —
(2p + 1) — 1, so the +1 due to the odd index switches sign
by the spin flip. Therefore, the average number of Pauli Z
of this pair is the 2s — 2r — 1 + 2¢ — 2p — 1, which is the
number of Pauli Z in the all spin-up term a; agaras (or the
all spin-down term).

2. One of p,g =one of r, s.
The total number of Pauli Z is given by the sum

10x[ Y @my-2my— 1)

my=mpy<m3<my

>

my<mp=m3<niy

Sy
my<mpy<miz=mgy
10

_ _3’" (> — 4m? + 5m — 2).

2myg —2m3z — 1 4+ 2m3 — 2m; — 1)

Qmy — 2m — 1)]

020310-10



QUBIT-ADAPT-VQE...

PRX QUANTUM 2, 020310 (2021)

Here, we do not have the counting prefactor in group 1 as
we already decide that one of the two identical indices is
in the dagger side.
3. p=q#r#s.
The total number of Pauli Z is given by the sum

2

mp=mp<m3z<my

2x[ (2my —2m3 — 1)

+ Z (Qmy — 2ms — 1+ 2ms — 2m; — 1)
my<mpy=m3<mgy
+ > @m-2m -]

my<mpy<m3=ny

2
Tm(m3 — 4?4 5m—2).

It is only different from case 2 by the prefactor 2 instead of
10 as it has two fermionic operators in total.

TABLE I.

4. p=qg=r#s.
The total number of Pauli Z is given by the sum
2x[ Y @me=2m -1

m)p=mpy=m3<my

2

m| <mpy=m3=niy
2m
?(Zm —3m+1).

Qmy — 2m; — 1)]

S.p=q#r=s.
Since the operators have a form a, a; a,ay, they do not
have Pauli Z.

Using Eq. (A3) and Table I, the average number can then
be calculated as follows:

_ Sm?2—m—38
spin — — 5 .

m>+m (A4)

Top: Average number of Pauli strings per anti-Hermitian pair of spin-orbital operators. Middle and bottom: For each group,

the number of combinations are calculated. For each combination, it has two spin group if it has both triplet and singlet operators, only
one spin group if it only has singlet. For each singlet and triplet operator, the number of fermionic terms are calculated. And then we
calculate the number of Paulis in each term. Finally, we count the length of Pauli Z.

Group 1 2 3 4 5
No. of Fermi ops (T) 6 6 NA NA NA
No. of Fermi ops (S) 4 4 2 2 1
Average no. of Paulis (T) 8 4x24+2x8)/6=4 NA NA NA
Average no. of Paulis (S) 8 2x24+2x8)/4=5 8 2 8
Group 1 2 3

No. of combinations
No. of spin groups

No. of Fermi ops

<’§) (mz_z)/zx(6+4)
(’;’) (m2_2>/2x(6+4)x8

m
E(2m4 — 15m3 + 40m?* — 45m + 18)

No. of Pauli strings

No. of Pauli Z

m(m2_1> x (64 4)

m<m2_1>x(6><4+4x5)

m<m2_1>><2x8

10m ) 2m )
T(m —4m” + Sm — 2) T(m —4m” + Sm — 2)

Group 4

Total

No. of combinations
No. of spin groups
. m
No. of Fermi ops 2 <2> x 2
m
2 ( 2) X2 x2

2
?m(zm2 “3m41)

No. of Pauli strings

No. of Pauli Z

5
('g m(m’ +2m* —m — 2)/8
(’; m(m? — 1)/4

(’; m(Sm> — 6m® — Tm + 8) /4
<'g> x 8

0 m(6m* — 21m® 4 32m?> — 27m + 10)/6

N— N N

2m(5m® — 15m* + 14m — 4)
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N BGm —15m® + 14m — 4)
T T S —6m? — Tm + 8

(A5)

_12m® = 30m? + 34m — 20
27 3(8 4+ m — 5m?)

(A6)

We can estimate the CNOTs required for the H4 molecule
(m=4)is

Nenor X Npars X Npauli X (6+2 x Nz) x Nspin
=11 X Npauii X (6 +2 X Nz) X Ngpin
= 192841,

which is very close to the number we obtain.

H4 LiH Hé6

Estimated no. of CNOTS per parameters 175 303 303
No. of parameters 11 30 91
Total estimated no. of CNOTS 1928 9078 27536
No. of CNOTS 2208 6824 28632

This estimation is accurate when all the spin orbitals are
evenly explored (H6 and H4), i.e., no “core” orbitals.

APPENDIX B: CONSTRUCTIVE PROOF OF
MINIMAL COMPLETE POOLS

In this appendix, we present a constructive proof that
there exist complete pools for qubit-ADAPT containing
only 2n — 2 operators, which we refer to as minimal
complete pools. We first prove that the set of operators
{(Vitn=s = {iZ32,Y1,iZ3Y,,iY3,iY,} forms a complete pool
for n = 3 qubits, i.e., using operators of the form [, e%"%,
we can rotate any real state into any other real state.
We then prove that the recursively defined pool, {V;}, =
{(Z,{Vi}u-1,iY,,iY,_1},1s a complete pool for n qubits, such
that [], %" |¢) = |) for any two real states |) and |¢)
in the Hilbert space.

1. Complete pool for three qubits
Here, we prove that {V;},—3={iZ32,Y1,iZ3Y>,iY3,iY>} is
a minimal complete pool for three qubits. We do this by
showing that we can map any state |y) to |000) using only
operators of the form [, e%".
We begin by decomposing an arbitrary real state |{/) as
follows:
%) = 10)3 [Wo)ar + 11)3 [¥1)a - (B1)
The subscripts outside the kets indicate which qubit(s)
the ket belongs to. In general, the two-qubit states |1g)

and |vY1) do not have the same norm: (Vo|vg) # (V1|¥).
However, we can always perform a rotation €3 on qubit
3 (the leftmost qubit) to transform [y/) to the form

[y')y =€ [yr) = 10)5 [Wg)ar + 113 [¥])a1, (B2)
where
[Wo) = cos O |Y) +sinf [y), (B3)
[Y1) = cos O [y;) —sind [) . (B4)
The norms of these states are
(Yol = cos® O (Yol o) + sin® O (Y [¥ry)
+ sin(20) (Yol¥1) , (BS)
(Y1) = cos® O (Y1 Y1) + sin® @ (Yrolo)
— sin(260) (Yoly1) . (B6)

We can make these two norms equal by choosing 8 such
that

(Y1 1¥1) — (Yolvro)
2 (o) '

Note that this procedure works for arbitrary states [v) and
[¥1), not just for two-qubit states.

The heart of the proof amounts to showing that a state
of the form in Eq. (B2), where (y|v) = (Y{l¥)) = 1/2,
can be transformed into a form where qubit 3 has been
factored out:

tan(20) =

(B7)

[¥") = (10) + 11)3 [x)21 5 (B8)

where |x) is some two-qubit state. We do this using
the (slightly reduced) set of pool operators {V™d}; =
{iZ32,Y,,iZ5Y,,iY,}. These are the same as {V;}3, except
that ;Y3 is not included. In the next subsection, we general-
ize Eq. (B8) to n qubits and then use it to prove that {V;},
is a complete pool.

To prove Eq. (BS8), let us begin by expanding |¢') as
follows:

[¥') =100) [¥rg,) + 101) [¥rgy) + [10) [¥r1,) + [11) [¥r).
(B9)

From this point onward, we suppress the subscripts on
the kets for notational simplicity. Similarly to how we
made the states [) and |) have the same norm, here

we can apply the conditional operations e[(1+23)/2172 and
eiel [(1-Z3)/2]Y, to make

<w6a|w(/)a> = <w(/)b|‘¢/(/)b> = <w{a|¢f{a) - (wib'w{b) = 1/4
(B10)

We assume that this has already been done in Eq. (B9), and
that [’) has been redefined accordingly.
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Next, we apply the conditional rotation #1421 on
qubit 1 to bring the state to

N 2Ty = (100) + [01)) [ x0) + 110) [v7,)
+ 1) [¥1,)-

Here, we use the fact that |/,) and [y/,) are real single-
qubit states, and thus can be viewed as two-dimensional
vectors lying in the same plane. The conditional rotation
1232271 rotates these two vectors in opposite directions
because one is conditioned on the state |00) and the other
on |01), and eventually the two vectors coincide at |xg)
for a particular value of the rotation angle ¢;. This opera-
tion also affects the other terms in Eq. (B11) (as indicated
with the extra primes), but their form remains the same.
This conditional operation will be used repeatedly in what
follows.

The next step is to apply a conditional rotation on qubit
2 to bring it to the state |0) in the first term:

(B11)

o 020(+23) /212 i1 Z3 25 Y | 1//)

= V2100) [x0) + 110) [¥{,) + [11) [y],).  (BI2)

We can then apply another conditional operation on qubit
1 to rotate the states |y{’) and [y/{,) into each other:

B0 Hig[(1423) /211 i1 Z3 25 Y |¢’)

= +/2100) [ xg) + (110) + [11)) [x1) (B13)

This operation brings the two states to some state | ). It
also changes |xo) to | Xé)- Another conditional rotation on
qubit 2 simplifies the second term:

' Pal(1=23)/21Y2 ,ib3 2325 Y, ,igo[(1423)/21Y2 i1 232, T | ¢’>

= V/2100) |x§) + V2 110) 1) - (B14)

We need one more conditional operation on qubit 1 to bring
this to the desired form:

ei¢52322 N ei¢4[( 1-73)/21Y> ei¢3 VAY£3 4 ei¢2[( 1+23)/21Y> ei¢1 2301 | w/)
= v/2(100) + [10)) [x) = (10) + 1)) [0) [x) V2. (B15)

We thus prove Eq. (BS). For reasons that will become clear
in the next subsection, it is important to note that we did
this using only the reduced pool {/74};.

All that remains is to show that Eq. (B15) can be mapped
to the state |000). This can be done using a Y3 rotation
followed by a conditional operation on qubit 1:

P61 ([N i¢sZ3 2y Y1 Higal(1-23) /2112
x e 03B20Y fipa[(1+23)/21Y  i$1Z322Y) [¥') = 1000) .

(B16)

Since we can map any state to [000), it follows that we
can map any three-qubit state to any other three-qubit state

using only the pool operators. We thus show that {V;}; =
{iZ32,Y,,iZ5Y,,iY3,iY,} is a minimal complete pool for
three qubits.

2. Proof of the complete pool for n qubits

In the previous subsection, we prove that the pool {V;}3
is a complete pool for three qubits. A key piece of this
proof is the statement that we can use the reduced pool
{erd}3 = {iZ32,Y,,iZ5Y,,iY,} to factor out the third qubit
Eq. (B8):

10) 1Y) + 1) 1¥1) — (10) + 1)) |X) (B17)
where we assume (Yl¥) = (¥l¥y), and |x) is some

two-qubit state. We prove that a similar statement holds
for n qubits.

Theorem: We can factor out the nth qubit from a generic
n-qubit state:
10} [v0) + 1) [¥1) — (10) + 1)) Ix) (BI8)

where (Y|v¥)) = (¥1l¥1), and |x) is some (n — 1)-qubit
state, using only the reduced n-qubit pool:

VY, = {Z Vil o1, iY01 )}

= {Zn{Vged}n—laiZnYn—laiYn—l}- (B19)

This pool is defined recursively starting from {#%*%};, and
it differs from the full pool by only one operator (iY,):

(Vita = {Z{Viln=1,iY0,i¥0 ). (BZO)

We use induction to prove this theorem. We assume it

holds for n qubits and then show that it also holds for n + 1

qubits. This proof will closely follow what we did for three
qubits above. Thus, we start with the (rn 4 1)-qubit state:

10041 1W0) + 1) 191, (B21)

where [|y) and [y]) are n-qubit states that have

the same norm. We want to factor out the leftmost

(n+ 1)th qubit using only the operators {V™}, ;| =

{Z,,+1{Vf.ed}n,iZn+1Yn,iY,,}. We decompose the state fur-
ther:

00) [vrg,) + 101) [vrgp) + [10) [91,) + [11) [9ry).  (B22)

As before, we can assume that all four states [v,),
[¥os)s 1W1,), 1¥1,), have the same norm of 1/4, since this

can be achieved by applying two conditional operations
G0L1+Z,D)/21Yn and i1 [(1=Zu11)/20Y
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We next apply a conditional operation built from the

Zy1 (V%)

operators e?l to map the state to

(100) +101)) Ixo0) + [10) [ry,) + [11) [¥r).  (B23)
We use the induction hypothesis for n qubits to obtain this
result. Since the leftmost qubit is in the state |0) in the first
two terms, the effect of e‘f’lZ”H{VfEd}" is the same as e‘z’l{V?d}"
on these terms, and the hypothesis for n qubits then allows
us to bring these two terms into a factorized form as above.
The last two terms also evolve under this operation, but
their general form remains the same since the n + 1 qubit
remains in the state |1) under this operation. We follow
this with a conditional operation e/#2[(!+Z+1)/21¥n on the nth
qubit to rotate it to |0) in the first term:

V2100) [x0) 4 110) [Wi.) + [11) [])). (B24)

Zy1 (V)

Another application of e?? " can be used to simi-

larly factorize the last two terms:

V2100) |xg) + (110} + 111)) [x1) - (B25)
Note that the form of the first term remains the same since
this conditional operation does not rotate the (n + 1)th
or nth qubits. This is because all the operators in {Vl?ed},,
have either a Z or a I on the nth qubit. Next apply
e/Pal(1=2u11)/21n 1o rotate the nth qubit in the second term
to |0):

V2100) | xg) + ~2110) [x1) - (B26)
Additional applications of e#Z+11*In bring this to
V210 + 1) [0) 1x) (B27)

as desired. In order to make this final step, we need to use
a slight extension of the theorem in which we factor out
the (n + 1)th qubit instead of the nth qubit. Do we have all
the necessary operators to make this extension work? Yes.
To see this, recall that in order to factor out the nth qubit,
we need { V74, = {Z,{V"*Y,—1,iZ,Yu—1,1Y,—1}. However,
here we have

Zuit VY = {201 Z VY1, 1201 Zy Y1y 201 Y ).
(B28)

J

Vi=2Z...2Y, V,=2Z...ZYI,

Vo1 =2ZYIl .. .1,
Vieso = ZZ ... ZIYII,

Voueo = IVII .. 1.

Vi=2Z...ZYI, ...,
Vr = ZZ .. . ZIYI,
oy Va3 =ZIVIT...I,

The operators Z,,+1Z,,{erd},,_1 and iZ,.12,Y,_1 pro-
duce exactly the same conditional rotations on the
state in Eq. (B26) as Z,{V™},_; and iZ,Y,_; pro-
duce on /2 |0) |X6) +4211) |x1). However, the theorem
also requires unconditional Y,_; rotations on | Xé) and
|x1). These can be implemented using the composite
operator

/D=2y 1)/ 200 i 2041 Za Yo /O ~Z00)/21n (B9

which first rotates Eq. (B26) into a state in which the
(n + 1)th and nth qubit states in the two terms have the
same parity before performing the Z,,,7,Y,_; rotation, so
that | X(/)) and | x;) undergo the same rotation. The (n + 1)th
and nth qubits are then restored to their original states
by the final rotation in Eq. (B29). Given that we already
show above that this procedure works for n = 3 qubits, this
completes the proof of the theorem.

With the theorem proven, it is easy to prove that {V;},11
is a complete pool. We already know that a rotation gener-
ated by Y,4+ is enough to bring an arbitrary (n + 1)-qubit
state to the form needed to apply the theorem. As we just
saw, we can then use Z,,H{Vired},,, iZ,+1Y,, and iY, to fac-
tor out the (n + 1)th qubit and arrive at Eq. (B27). If we
then apply another Y,,; rotation to bring the (n + 1)th
qubit to |0), we can perform the conditional operation

szt 1o rotate +/2 |x) to [0)®". Thus, we can
rotate an arbitrary (n + 1)-qubit state to |0)®"*! using only
the generators {Vi}n+1 = {Zn+1 { Vl_red}n’ iZn+1 Y,,, iYn+le iYn}-
This in turn implies that we can rotate any (n + 1)-qubit
state to any other (n 4 1)-qubit state using the same set
of operators. Therefore, {V;},+1 is a complete pool, and it
contains 2n — 2 operators.

APPENDIX C: MAPPING BETWEEN MINIMAL
COMPLETE POOLS

In this section, we show that the two examples of min-
imal complete pools discussed in the main text can be
mapped into one another. The first example is the pool {V;}
that is constructed iteratively in Appendix B. The second
example is the pool comprised of operators that act only on
adjacent qubits in a linear array, {G;}. To facilitate the fol-
lowing analysis, we order the elements in these two pools
as follows (where we ignore the factors of i in the definition
of the pool operators for simplicity):

Va=YII...I,
(€D
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Gi=2ZVIl...I, Gy,=IZYIl...I,
Gy =1ZYIl...I, ...,
Gy=YIl...I, Guy1 =1IYI...I,

G =1IYIT ... 1, ...,

We show that the V; can be obtained from commuta-
tors of the G;. This means that the two pools share the
same operator basis, and so completeness of the one pool
implies completeness of the other. Since we already prove
above that the V; are complete in Appendix B, this demon-
strates that the G; also form a minimal complete pool for
any number # of qubits.

Recall that two Pauli strings do not commute if they
differ by an odd number of Pauli operators, ignoring any
qubits with identity operators in at least one of the two
strings. In this case, the result of the commutator is propor-
tional to the product of the two Pauli strings. Now notice
that we can write the V; as products of the G;:

k
Vack ~ G [[G1Gron-1, k=2,....n—1,

Jj=2
anl = Gl: (C3)
V,= Gna
Voneie ~ Ge=1GiVo—r, k=3,...,n—1,
Von—z = Guy1.

The operators in the product in the first line should be
ordered such that the operators with the smallest values
of j are on the left and the ones with the largest values
are on the right. Notice that no two adjacent operators in
these products commute. Therefore, we can rewrite them
as nested commutators of the G;. This proves that the V;
and G; produce the same operator basis when all possible
commutators of each pool are computed. We already show
in Appendix B that the V; are complete. Therefore, the G;
also constitute a minimal complete pool. This pool is par-
ticularly useful for quantum processors containing a linear
array of qubits with nearest-neighbor coupling only. Inter-
estingly, the entangling operators in the G; pool are sim-
ilar to the cross-resonance interaction in fixed-frequency
superconducting qubits, such as those in the IBM quantum
processors [53—55]. This similarity could be exploited to
implement qubit-ADAPT with native hardware operations.
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