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The Gottesman-Kitaev-Preskill (GKP) code was proposed in 2001 by Daniel Gottesman, Alexei Kitaev,
and John Preskill as a way to encode a qubit in an oscillator. The GKP codewords are coherent superpo-
sitions of periodically displaced squeezed vacuum states. Because of the challenge of merely preparing
the codewords, the GKP code was for a long time considered to be impractical. However, the remarkable
developments in quantum hardware and control technology in the last two decades has made the GKP code
a frontrunner in the race to build practical, fault-tolerant bosonic quantum technology. In this Perspective,
we provide an overview of the GKP code with emphasis on its implementation in the circuit-QED archi-
tecture and present our outlook on the challenges and opportunities for scaling it up for hardware-efficient,

fault-tolerant quantum error correction.
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I. INTRODUCTION

In 2001, Gottesman, Kitaev, and Preskill published a
proposal to encode discrete quantum information in a
continuous-variable quantum system, or in other words,
“a qubit in an oscillator” [1]. The encoding is designed
such that it is possible to correct small shifts in the position
and momentum quadratures of the oscillator. This remark-
able idea can safely be said to have been ahead of its time:
It took almost 20 years before experimental realization of
their proposal was made by the Home group using an oscil-
lating trapped ion [2]. It was almost immediately followed
by the experimental realization in the Devoret group, using
a microwave cavity and a circuit quantum electrodynamics
(cQED) approach [3]. More broadly, these two experi-
ments are part of a flourishing effort to demonstrate robust
encoding of quantum information using bosonic degrees
of freedom, with the ultimate long-term goal of building a
fault-tolerant quantum computer [4—10].

The idea of encoding information in a continuous-
variable quantum system is in many ways very natu-
ral. Quantum harmonic oscillators abound in nature, and
well-defined bosonic modes can be isolated from envi-
ronmental noise in many quantum technology platforms.
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Early proposals for bosonic error-correcting codes were
made already in the late 1990s [11,12]. The core idea
behind these proposals is to encode k logical qubits into
n bosonic modes, and attempt to exploit the large Hilbert
space of each bosonic mode to achieve an efficient encod-
ing with good error-correcting properties for a small #.
Successful bosonic codes are referred to as hardware
efficient. Remarkably, interesting bosonic codes, and the
Gottesman-Kitaev-Preskill (GKP) code in particular, exist
evenfork=n=1.

The primary requirement for implementing bosonic
codes, and also why it took two decades of technologi-
cal developments before the GKP states were realized, is
control of a high-quality harmonic oscillator mode with
a sufficiently strong and high-quality ancillary nonlinear-
ity. This nonlinearity can be a discrete two-level system.
In the case of trapped ions, a bosonic state is encoded in
the harmonic motion of a single trapped ion by exploiting
the strong coupling with the ancillary atomic pseudospin
states. In the case of cQED, the ancillary levels of a trans-
mon have been used to realize a bosonic encoding in the
microwave fields of a superconducting cavity or resonator.
Harmonic modes with high quality factors, combined with
easy access to strong nonlinearities with minimal dissipa-
tion, lead to an unprecedented coherent control over the
oscillator Hilbert space in these platforms [2—7,10,13].

Optical systems are also researched actively in the con-
text of GKP codes [14—17]. Some proposals are based on
using optical nonlinearities or interaction between atoms
and light to generate photonic GKP states [18,19]. Several
other proposals rely on photon-number-resolving detectors
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as the ancillary nonlinear resource [20,21]. However,
because of photon loss, weak optical nonlinearities, and
the need for complex multiplexing with high-efficiency
number-resolving detectors, generation of the highly non-
Gaussian GKP states have not yet been demonstrated in
the optical domain.

Given that preparation of GKP-encoded states has now
been demonstrated in the lab—and it is not a big leap to
imagine that gates between two encoded GKP qubits are
right around the corner—it is natural to ask whether GKP
encodings can become a competitive approach to large-
scale, fault-tolerant quantum computing. While the GKP
code can correct for small quadrature shifts in the oscil-
lator, realistic noise in an experimental platform is more
complex and can introduce uncorrectable errors. There-
fore, in practice the suppression in the logical error rate
with a single-mode GKP code will be limited. A natu-
ral approach to “scale up” is to reduce errors as much
as possible in the single-mode encoding and then con-
catenate a number of encoded GKP qubits to a second
error-correcting code, for example a surface code, for a
total of one logical qubit across » physical modes [22—25].
If this approach leads to a substantially lower logical error
rate than using a comparable number of unencoded phys-
ical qubits, one may achieve a better encoding with a
similar hardware cost.

A milestone towards this goal of resource-efficient fault
tolerance would be to demonstrate basic operations on the
encoded GKP states, used to compose error-correction cir-
cuits, with fidelities that are comparable or better than the
best physical qubits to date. These operations include state
preparation, entangling gates between two GKP-encoded
modes, and measurement. This is a challenging goal con-
sidering the high-fidelity qubit operations in both trapped
ions and superconducting qubits today.

A fundamental obstacle to achieving high-fidelity opera-
tions on encoded GKP states is that practical constructions
of the required interactions can ruin the protection offered
by the bosonic encoding. For example, if a two-level sys-
tem is used to control the oscillator mode, a single error on
the two-level system may propagate to a logical error on
the mode [2,3,10]. This can prohibit the fidelity of encoded
operations on the GKP states from being significantly bet-
ter than those of the unencoded two-level ancilla. How to
best achieve fault tolerance against such ancilla errors in
a bosonic code architecture is an important open question,
and we touch on some of the possibilities that have been
put forth towards this goal.

In this Perspective, we discuss the prospect of scalable,
fault-tolerant quantum computing with GKP codes with
special emphasis on its implementation in a cQED archi-
tecture. While there are several excellent review articles on
GKP and other bosonic codes [24,26-28], here we provide
an application-level perspective highlighting the outstand-
ing practical challenges. We focus on cQED partly because

the two authors are working in this field, but also because
we believe the flexibility and scalability of superconduct-
ing circuits make this a particularly promising platform for
the long-term goal of constructing a large-scale quantum
computer based on bosonic encodings.

With this in mind, we begin with an overview of the
GKP code in Sec. II, go on to discuss state preparation
and error correction in Sec. III, and address the ques-
tion of fault-tolerant, scalable quantum computing with
GKP codes in Sec. IV. Throughout this Perspective, we
emphasize not only the advances made towards GKP error
correction but also the challenges that must be overcome
to make practical fault tolerance with GKP codes possible.
These challenges and opportunities for future research are
summarized in Sec. V.

II. INTRODUCTION TO
GOTTESMAN-KITAEV-PRESKILL CODES

A. Basic definitions

In general, GKP codes encode a d-dimensional logical
subspace in n bosonic modes [1]. We here focus exclu-
sively on the simplest nontrivial case d =2 and n =1,
i.e., a single logical qubit encoded in a single bosonic
mode. To define a GKP code, it is first convenient to intro-
duce the displacement operators D(oe) = e“&T‘“*&, where
[a,a'] =1 are the usual ladder operators of a harmonic
oscillator and « is a complex number. The displacement
operators satisfy the property

D(B)D(a) = B F 2P (a + B)
= P " D(a) D(P). (1)

In other words, displacements commute “up to a phase.”
In particular, if

Ba* — B*a = im, 2

the two operators anticommute, while if ¢8* — af* = 2im
they commute.

To define a GKP code, we first choose logical Pauli
operators X = b(a) and Z = D(,B), where o and B are
any two complex numbers that satisfy Eq. (2). This ensures
that XZ = —ZX. To ensure that X, Z, and Y = iXZ =
ﬁ(ot + B) behave like the usual two-by-two Pauli matrices,
they should also square to the identity on any state in the
code subspace (codespace). We therefore define the GKP
logical codespace to be the simultaneous +1 eigenspace of
the two operators

Sy =X?=DQa), S,=27%=D@p). (3)
It follows from Eq. (1) that these two operators commute

with each other, and the logical Paulis. The set {Sf(, S"Z} for
k, ! € Z form the stabilizer group of the GKP code.
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We can write the GKP codewords explicitly in terms
of sums of quadrature eigenstates. To this end, first define

two generalized quadratures Q = i(8*a — Ba’) /7, P =
—i(a*a — aa’)//m, such that [Q, P] = i and
X = eiiﬁﬁ, Z= eiﬁQ, Y= eiﬁ@fﬁ). 4)

It is straight forward to check that

00) = ) 12/ (5a)
Jj=—00

)= Y 12 + D7)y (5b)
Jj=—00

are +1 eigenstates of Z, respectively, and +1 eigenstates
of Sy and S;. Here we use a notation where [X)p is
an eigenstate of O with eigenvalue x. We have analo-
gous expressions in the dual basis: |+7) = 37, 2/ /) p,
=) = 3, 12 + DY)

An alternative expression for the codewords can be
found by noting that the state |0) Z,?,:_oo S'f(ZlIO), is
a simultaneous +1 eigenstate of the two stabilizer genera-
tors Sy, Sz and logical Z (in fact, the vacuum state |0) can
be replaced by an arbitrary state |y) with nonzero overlap
with |0z) in this expression). With the help of Eq. (1), it
follows that the logical states can be written

oo
00) oc Y e ™M |2ka + 1B), (6a)
k=—00
1) o< o e D@k + Do+ 1), (6b)
k,=—00

where the kets on the right-hand side are coherent states
|C) = ﬁ({)lO). Analogous expressions can be found for
the &1 eigenstates of X following the same approach.

Since any pair «, 8 that satisfy Eq. (2) is a valid choice,
there is an infinity of different GKP codes. The three most
common choices are square, rectangular, and hexagonal
codes, defined, respectively, by

a= 2 B=i> (72)
square: o = 7 B =i 7 a
rect:azk/%, ﬂzi/%, A >0, (7b)
T , T
hex: o = | —, =¥ [ 7c

V3 ¢ V3 7o

Note that for the square code, the generalized quadra-
tures introduced above are just the usual position and

(a)Je © e o o] (b)

° o © ° o °
B

° o =% ° ° o °

° o ° o ° ° o L o

o . .
g 0 . 7 ¢
— * -
—9 4 4
~25 0.0 2.5 — —
Re¢ -02 00 02
FIG. 1. Square (a) and hexagonal (b) GKP lattices (adapted

from Ref. [29]). In Eq. (6) coherent states are placed on the filled
(empty) circles for the |0;) (|1;)) state. The area of the lattice
parallelogram is 77/2, which ensures the correct anticommuta-
tion relation for the logical operators defined in Eq. (3). Wigner
functions W(¢) for approximate I()L) states with A = 0.3 are
shown for square (c) and hexagonal (d) GKP codes. Position
[g = (@' + a)/+/2] and momentum [p = i(a" — a)/+/2] wave
functions are shown in blue.

momentum quadratures O = § = (@ + a')/v2, Po=
p = —i(@a—a")/~/2. The square and hexagonal GKP lat-
tices are illustrated in Fig. 1.

B. Approximate GKP codewords

The GKP codespace is a rather abstract construction.
The codewords in Eq. (5) are non-normalizable, and in
general there is no physical process that can prepare a state
lying entirely in the GKP codespace. In practice we have
to make do with some type of approximation to Egs. (5)
and (6). Colloquially, we refer to any pair of normal-
ized states |iz), 4 = 0,1 that satisfy S‘PmL) — |pz) and
Z|j) — (=DH*|pg) for P=X,Z, in some meaningful
limit, as an approximate GKP code.

One natural way to define such an approximate
code is [30]

~ _ Za’ra
i) oc e wr), (8)

where we ignore normalization constants, for simplic-
ity. The ideal limit corresponds to A — 0. Equation (8)
introduces a Gaussian envelope over the infinite sums
in Eq. (6), such that each coherent state |¢) is

replaced by e‘<1/2)(1‘67m2)”|2|e‘A2§) ~ e AP =A%y,
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which ensures the normalizability of the codewords. The
10,) codewords for square and hexagonal GKP codes with
A = 0.3 are shown in Fig. 1. It is also possible to view the
code defined in Eq. (8) as resulting from a modification of
the stabilizers defining the codespace. More precisely, the
codewords in Eq. (8) are exact 41 eigenstates of the two
commuting nonunitary operators

Syz= e Aalagy 5on"a, ©))
with logical operators defined analogously, P* =
e Mdlaper’dla for p — X 7 [31].

Another common approximate form is found by apply-
ing weighted displacements to the ideal codewords

i) = / dudvna (u,v) €2 ™|y, (10)

o0

where na(u,v) is concentrated around zero as A — 0.
Equation (8) is recovered with na(x,y) =
e—(x2+y2)/(4tanh(A2/2)/[n,(1 _ e—AZ)] ~ e—(x2+y2)/2A2/jTA2
[31]. We can use Eq. (5) in Eq. (10) and perform the
integral over v to find yet another approximation [1]

1 o0
Z e—Azrr(2j +w)? /2

litr) ~
N

« / due PP\ f 4 )T u)y, (1)

oo

where N, = /7/2+ O (e*”/A2
has the physical interpretation of a comb of squeezed states
with an overall Gaussian envelope.

It is convenient to introduce a metric to quantify how
close an arbitrary state p is to an ideal GKP state. To this
end, we introduce a modular “squeezing” parameter for
each of the two stabilizers S‘X,Z [32]

) as A — 0. This form

1 —
Ax = =/~ log(|t[Sx A1),

2lal (12a)

— log(|tr{SzA112). (12b)

Az

1
2(Bl
The squeezing parameters satisfy Ay z > 0, and are zero
if and only if the state is an eigenstate of the corre-
sponding stabilizer. For the approximate GKP codewords
introduced above, we have Ay z = A as A — 0. It is also
conventional to measure the modular squeezing in dB
Sx.z = —10log o (A% ). (13)
For example, the square (hexagonal) approximate code-
word shown in Fig. 1 has Sy = Sz = 10.1 dB (9.48 dB),

corresponding to an average photon number of approxi-
mately (n) = 4.6. We from now on drop the subscripts
X,Z and simply write A and & when the two quadratures
are approximately equally squeezed and the distinction is
unimportant.

C. Error correcting properties

The purpose of encoding a logical qubit in a GKP code is
that it provides protection from noise through error correc-
tion. To see this, consider first an error model consisting of
small displacements applied to the oscillator. For an arbi-
trary displacementf)(() we can write { = (ua + vB)//7,
where u, v are real, and consequently

l’\)(é.) — eiuu/Ze—iu]Sein. (14)
From Eq. (5) it is clear that the quantum error correction
criteria [33] are formally satisfied for the ideal GKP code
for the set of displacement errors ﬁ(; ) such that |u|, |v| <
J7 /2.

This also gives us some insight into why the approx-
imate GKP codewords introduced in the previous section
are “good” approximations. As long as n (u, v) in Eq. (10)
is sufficiently localized around zero, the “error” introduced
in the approximate codewords is small, and as long as we
ensure that all the logical operations used in our quantum
computation do not amplify these errors too badly, i.e.,
they are “fault tolerant,” then we can expect to perform
quantum computation with these approximate GKP code-
words with high accuracy (see Sec. II D4 for a more precise
discussion around what we mean by not “too badly”).

For physical GKP codes and realistic error models, we
expect that the error correction criteria are at best only
approximately satisfied. Realistic error models for oscil-
lators typically include loss, heating, dephasing, unitary
errors due to imperfect implementation of control Hamilto-
nians, etc. Since the displacement operators form an oper-
ator basis, any single-mode noise channel can be expanded
in terms of displacements

£(5) = / Pedf (6, ¢HD@PDTE).  (15)

Again, as long as f(¢,¢’) is sufficiently concentrated
around zero, it is in principle possible to remove the noise
with high fidelity. Realistic error models, however, typi-
cally have some finite support on displacements larger than
/7 /2, which means that the error can not be corrected
perfectly, even in the limit A — 0.

In Fig. 2 we illustrate how the quantum-error-correction
properties of the GKP code manifest for a practically rel-
evant noise channel consisting of simultaneous loss and
dephasing. More precisely, the noise model is given by the
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wt=10"3 kgt = 0

Kt =10"3 ket = 1073

107°

25 50 75

Ncode

25 5.0 75
Ncode

FIG. 2. Average gate fidelity for an approximate square GKP
code as a function of photon number ngoge = ((07]70.) +
(1]711.))/2, for simultaneous loss and dephasing quantified by
«t and kyt, followed by optimal error correction. The GKP code
outperforms the “trivial encoding” in Fock states |0) and |1)
whenever the fidelity dips below the gray shaded region.

solution to a Lindblad master equation
p = «D[alp + ks DIAA, (16)

with D[A]p = ApAt — %21*21,6 — % pATA, integrated up to
a fixed time ¢. The noise strength in this model is thus
characterized by two dimensionless numbers, «¢ and k41,
describing pure loss and dephasing, respectively. The noise
is then followed by the optimal recovery channel that
maximizes the average gate fidelity [34] with the identity
channel. This optimal error-correction map can be found
numerically [35], but does not represent a practical error-
correction procedure—it merely puts an upper bound on
the fidelity that can be achieved and illustrates the intrinsic
error-correction properties of the code.

The results in Fig. 2 show that the GKP code has an
excellent potential to correct loss errors [35], but is rather
poor against dephasing (there are other bosonic codes that
perform far better against this latter type of noise [29]).
The sensitivity to dephasing is not surprising, as a rotation
of phase space by a small angle gives a large displace-
ment for large amplitudes. In practice, dephasing might
arise not only due to the intrinsic frequency fluctuations
of the oscillator used to encode the GKP code (which can
be made very small), but also due to off-resonant coupling
to ancilliary quantum systems used to control the oscilla-
tor [3-5]. It is therefore crucial to minimize such residual
couplings in practical implementations of GKP codes.
A similar issue is likely to arise if there are over-rotations

and/or unwanted residual Hamiltonian terms due to mis-
calibrated unitary gates, and very precise quantum control
is therefore important for GKP codes.

D. Logical operations on GKP codes

One of the attractive properties of GKP codes is that,
apart from state preparation, all logical Clifford operations
can be performed using only Gaussian operations, that
is, interactions that are at most quadratic in creation and
annihilation operators and homodyne measurements on the
oscillator. In this section we describe how to perform logi-
cal Pauli measurements and unitary Clifford gates, leaving
the more difficult topic of state preparation and error
correction to Sec. III.

1. Pauli quadrature measurements

Destructive logical measurements in any Pauli basis
(Myx yz) can be performed by measuring one of three
respective quadratures

My : measure —P, (17a)
My : measure Q — P, (17b)
My : measure O, (17¢)

and rounding the outcome to the nearest multiple of /7.
If the result is an even multiple, report a +1 outcome,
and if the result is an odd multiple, report —1. That this
gives a logical Pauli measurement follows from Eq. (4).
An attractive feature of this measurement scheme is that it
is robust to small displacement errors—precisely the type
of errors the GKP code is meant to be robust against—and
can in this sense be said to be fault tolerant. The procedure
is illustrated for an M measurement on an approximate
square GKP code in Fig. 3(a).

Quadrature measurements are routinely performed in
both the microwave and optical domain. Performing such
measurements on an encoded GKP qubit is, however, not
as straight forward. In the context of cQED and other
approaches where the GKP state is encoded in a local-
ized high-quality mode, such as the standing modes of a
cavity, the ability to rapidly perform quadrature measure-
ments contradicts the requirement of the oscillator mode
to be long lived. It is therefore necessary to either tune
the oscillator decay rate « from a small to a large value
prior to measurement, or to map the encoded information
from a high-Q to a low-Q mode (with O ~ 1/« the quality
factor) [36].

The situation is further complicated by the fact that the
measurement efficiency for homodyne detection is limited
in practice. The ability to distinguish the codewords dete-
riorates rapidly with decreasing measurement efficiency,
as shown in Fig. 3(b). A measurement efficiency n below
unity means that the GKP state shrinks towards vacuum,
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1.0 4 (a) ¥1(q)
=
< 054 Yo(q)
OO —— 1 1 T <
~10 -5 0 5 10

FIG. 3. (a) Position wave functions for logical zero (blue)
and one (red) for a square GKP code with A = 0.3. A logical
M measurement can be executed by first measuring position
(homodyne measurement) and binning the result. The white
(gray) regions correspond to a logical zero (one) outcome.
(b) Probability of mistaking logical zero for one under a homo-
dyne measurement with measurement efficiency n for A = 0.3
(S =10.1 dB, blue solid) and A = 0.2 (S = 13.8 dB, orange
solid). Note that the bin boundaries are scaled by /7 to account
for measurement inefficiency. For comparison, the dotted lines
show the corresponding measurement error with one round
of noiseless phase estimation using the scheme in Fig. 4(b).
(c) Same as (b) but for a majority vote over n rounds of noiseless
phase estimation using the schemes in Figs. 4(a) (solid) and 4(b)
(dotted).

and it is important to compensate for this (assuming that n
itself is known) by rescaling the measurement bins [white
and pink in Fig. 3(a)] appropriately. More precisely, we
now round to the nearest integer multiple of ,/nm [37].
To produce the numerical results in Fig. 3(b) we take an
approximate |0;) state, apply a pure loss channel with
n = e !, followed by an ideal measurement of the position
quadrature and bin the result.

In the microwave domain, state-of-the-art measurement
efficiencies are well below 90%, even with the use of
near quantum-limited amplifiers [38,39]. The results in
Fig. 3(b) show that measurement efficiencies will have to
be improved for this approach to be promising for distin-
guishing GKP codewords with high fidelity. For example,
at n = 75%—a high but not unreasonable value for a
microwave measurement chain—the error probability is
about peyr ~ 5.6% (4.1%) for A = 0.3 (0.2). For com-
parison, at n = 90% we find 0.61% (0.15%). Note that
rather large measurement efficiencies are required to have
a substantial benefit from lowering A.

The measurement efficiency may be improved if we
can amplify the quadrature information prior to releas-
ing the GKP state to a standard microwave measurement

chain [40]. Although most theoretical work on GKP codes
assume high-efficiency quadrature measurements [22—-25],
it is an open question whether the stringent demands
required for scalable, fault-tolerant quantum computing
can be met with this approach. We return to this question in
Sec. IV where we discuss concatenation with topological
codes.

2. Pauli phase estimation

An alternative, and nondestructive, way to do logical
Pauli measurements is by performing phase estimation
using an ancillary system. In the simplest case this task
can be performed using a discrete two-level system as an
ancilla, removing the need to perform direct quadrature
measurements on an encoded GKP state.

Since the logical GKP Paulis are unitary displacement
operators, X = D(a),Z = D(B), their eigenvalues are
of the form e” with € [0,27). The task of estimat-
ing an eigenvalue of a unitary operator, or equivalently
the “phase” 0, is generally known as phase estimation. A
variety of different phase-estimation protocols exist, with
trade-offs in terms of efficiency and complexity [31,41,42].
We here focus on a simple nonadaptive scheme using a sin-
gle two-level ancilla. Specifically we consider the scheme
that was used in the experiments in Refs. [2,3], illustrated
in Fig. 4(a), as well as a modified version that has theo-
retically been shown to give better performance, shown in
Fig. 4(b) [31,43].

The central component of these schemes is a controlled-
displacement gate CD(¢), which applies a displacement on
the GKP mode D(:I:( /2) conditioned on the state of the
two-level ancilla. See Fig. 9 for possible implementations
of this gate in cQED. At the end of the circuit, the ancilla is

(@) —DQ—

FIG. 4. (a) One round of phase estimation. The con-
trolled displacement is defined as Cﬁ(;) = D({ /2) ®104)(0,) +
D(—/2) ® |1,)(1,), with |0,/1,) the state of the ancilla. For X
measurement ¢ = « and for Z measurement ¢ = 8. (b) Improved
phase-estimation scheme. Here, € is a small displacement orthog-
onal to ¢, ie., arge = arg¢ + /2. For X measurement we
set D(e /2) = ¢=2 and for Z measurement D(e /2) = ™’ with
A € R. The R, gate is defined as R, = e "%/4 Note that with
this definition of the controlled displacement gate, the state is
displaced by ¢ /2 from the codespace after the measurement. This
can be corrected for with another displacement if necessary.
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measured in the X basis. Consider first the simplest scheme
in Fig. 4(a). The probability of getting an X = =+ outcome
for the ancilla measurement is given by

1 1/ A N
- - T
P(E) =3 [1 +3 ((D(C)) + (D (C)))] (18)

To be concrete, let us take ﬁ({) = Z. For an ideal GKP
code we have (ur|Z|uz) ==+1 for w=0,1, and thus
P(+) = 1, P(—) = 0 for the |0 state. For an approximate
|0.) state, on the other hand, there is a nonzero proba-
bility of getting a —1 outcome. Using Eq. (11) one can
show that (0,]Z|0;) ~ e~™A%/4 for small A, such that the
measurement error becomes

1 2 TA
err:P—:—(l—_”A/4>2—. 19
P () =5 e g (19)

Interestingly, the performance can be improved signifi-
cantly using the scheme shown in Fig. 4(b). Here, a small
controlled displacement orthogonal to the logical displace-

ment is performed first. In the case of a Z = &V 0 mea-

surement we set D(e/2) = ¢ with A real. The intuition
behind the scheme is that this gives a better approximation
to a measurement of the approximate logical Pauli opera-
tor Z» introduced in Sec. IIB [31]. In this case, one can
show that the measurement error becomes

1
P = 3 {1 _ oAt/ [e—uz/w + sin (ﬁx)]} . (20

We can treat A as a free parameter to be optimized. In the
small A limit pe,, is minimized for A ~ /7 A?/2 in which
case one finds por ~ 0.4A°, a significant improvement
over Eq. (19) [43].

In Fig. 3(c) we show pe, for a majority vote over n
rounds of ideal phase estimation with a noiseless two-
level ancilla for the two respective schemes. For the simple
scheme in Fig. 4(a) and A = 0.3 (0.2) we find perr =~ 3.7%,
1.0%, and 0.4% (1.6%, 0.2%, and 0.05%) forn = 1, 3, and
5 measurements, respectively. For the improved scheme
in Fig. 4(b) we find per ~ 2.6 x 1074, 1.6 x 107%, and
1.5x 1074 (1.9 x 107>, 6.2 x 107, and 2.5 x 10~°) for
the same parameters. These results are produced by numer-
ically computing the probability of a —1 measurement
outcome on a |6L) state for the circuits in Fig. 4, and in the
case of the scheme in (b) optimizing over the parameter A.

These results show that phase estimation, modified to
better distinguish the approximate Pauli operators of a
physical GKP code, can lead to very small measure-
ment errors when the ancilla is noiseless. In Sec. 11l we
discuss how this approach can form the basis for a state-
preparation scheme, by measuring stabilizer operators in
place of logical Paulis. A fundamental obstacle to this
approach, however, is that errors on the ancilla qubit can

propagate back to the GKP mode. In particular, a bit flip of
the ancilla qubit during the controlled displacement gate
Cb({) leads to a large, random displacement of the GKP
code. In Sec. I1I B we discuss a potential way to make these
schemes robust to such ancilla errors.

3. Clifford gates and Clifford frames

As already mentioned, Clifford gates can be performed
using interactions that are at most quadratic in the creation
and annihilation operators. Specifically, the Clifford group
can be generated, for example, from the Hadamard (H),
phase (S), and CNOT (Cy) gates [1]

H o= @R @ Gy = o109 (o]

where we use the generalized (code-dependent) quadra-
tures Q,ﬁ’ introduced in Sec. ITA. For the Cy gate the
first mode is the control and the second mode the tar-
get. Together with logical basis measurements M  and
preparation of encoded states |0;) and |4;) = \/%(IOL) +

€”/4|1,)), this forms a universal set.

It should be emphasized, however, that the gates in
Eq. (21) are in general only approximate logical gates on
approximate GKP codes, and, despite being unitary oper-
ations, may reduce the quality of the encoded information
by making the codewords harder to distinguish [this can be
seen from the fact that the gates do not commute with the
envelope operator introduced in Eq. (8)] [21,37].

Due to the approximate nature of the logical gates
on physical GKP codewords, it is desirable to minimize
the number of Clifford gates in a given quantum circuit.
An elegant solution to this problem is to make use of a
so-called Clifford frame, where single-qubit Cliffords are
tracked “in software” [44,45]. The idea of the (single-
qubit) Clifford frame is as follows: An arbitrary quantum
circuit C, written in terms of preparation of |0;) and |A4.)
states, gates from the set {H, S, Cx}, and Pauli measure-
ments M, can be replaced by an equivalent circuit C’,
where the state preparation is identical, the measurements
are in any Pauli basis, and all the gates are from the set

1
Coroy =1®1—§(1—a,»)®(1—oj), (22)

where 0;; € {X, Y, Z} runs over the usual Pauli operators.
Moreover, the number of qubits, two-qubit gates, and mea-
surements in the new circuit C’ is the same as in C, while
all single-qubit gates have been removed. Constructing C’
from C is straight forward. One simply commutes the H
and S gates through all the Cx gates, mapping them to new
gates from the set Eq. (22) (and by-product single-qubit
Pauli gates) in the process, and finally absorb any single-
qubit Cliffords and Paulis into the measurements, mapping
M to general Pauli measurements [46]. An example is
given in Fig. 5.
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(a) (b) —¢

" |

FIG. 5. Example computation in the (single-qubit) Clifford
frame. A general quantum circuit (a) can be rewritten using
only (adaptive) Clifford gates and magic states |[4) = T'|+), with
T = diag(1, €™/*) (b). The circuit in (b) can moreover be rewrit-
ten as either (c¢) or (d), depending on the measurement outcome
Z; = %1 of the first qubit. The generalized control gates are
defined in Eq. (22). For GKP qubits, updating the Clifford frame
amounts to changing the phase of local oscillators (c.f. Fig. 6) so
that single-qubit Clifford gates are done in software.

For GKP-encoded qubits, the gate set Eq. (22) is partic-
ularly attractive, because switching between gates in this
set is essentially a “free” operation in many physical plat-
forms. More precisely, an encoded version of the gateset
for GKP codes is realized by [37]

(23)

where §; = —P, 5, = Q — P, 5 = Q are the three quadra-
tures corresponding to logical X, Y, and Z, respectively.

Any gate from the set Eq. (23) can be generated from
an interaction of the form Hy 4 o e?abt + ¢%ab + H.c.,
where & and b are annihilation operators for the two respec-
tive modes. In turn, H, . can be realized, for example, from
a three-wave mixing interaction with a classical pump with
two pump-tone frequencies at the sum and difference of the
two GKP modes, respectively, and 6 and ¢ set by the two
corresponding pump phases, see Fig. 6(a). Alternatively,
it can be realized from a four-wave mixing interaction,
using four pump tones, as shown in Fig. 6(b). Updating the
Clifford frame thus simply amounts to updating the pro-
gramming of classical pump phases. Albeit logical gates
between two GKP qubits have not yet been demonstrated
at the time of writing, the ability to engineer interactions of
the form I%,(,, have already been used for other applications
in cQED [36,47-50].

4. Error spread through gates

An important consequence of the fact that Clifford gates
on GKP codes can be generated by quadratic Hamilto-
nians is that this guarantees that errors are not amplified

(a) (b)
w:
w — Wﬁ‘ —
© ws
wmw: [r—Y
w2 Wy
w1 = |w0~1 - wCVQ‘ |UJ1 - 0./‘2| = ‘wc,l - w(:.,2|
Wg = We,1 + We,2 w3 + Wy = We,1 + We2
© = — R_d — g
. eadout Flux loop Transmon
SNAIL resonator
FIG. 6. Tllustration of how the Hamiltonian Hp 4 o e?abt +

¢%ab 4 H.c., required for realization of the two-qubit Clifford
gates Gy, in Eq. (23), may be realized in a cQED architec-
ture. The two GKP resonators, shown in orange and blue, have
frequencies ., and w.,, respectively. In (a), a superconduct-
ing nonlinear asymmetric inductive element (SNAIL) is used
for the coupling [S1]. At an appropriate flux bias, the SNAIL
exhibits a strong third-order nonlinearity. Two microwave drives
are applied at frequencies w; and w, so that w; = |w. ] — W 2|
and w; = w.,] + w.,. Because of the third-order nonlinearity, a
single photon at w; is consumed to convert a photon at @ to
that at w,». This leads to an interaction of the form athe? + H.c.,
where the strength of the interaction and 6 depend on the strength
of the microwave drive at w; and its phase, respectively. Simi-
larly, a single photon at w, is consumed to create two photons,
one at w,,; and the other at w.,. This leads to an interaction of
the form a'h'e + H.c., where, again, the strength of the inter-
action and ¢ is set by the drive strength and phase, respectively.
Alternatively, it is possible to engineer f]w using a transmon as
shown in (b). In this case, four pump tones can be used to gen-
erate the interaction. Due to the fourth-order nonlinearity of the
transmon, a photon each from the pumps at w3 and w4 such that
w3 + w4 = We 1 + W), are consumed to generate two photons at
wc,1 and w.,. On the other hand, photons from the pumps at w,
and w, such that |w; — w| = |w.1 — @], convert a photon at
w1 10 @ via four-wave mixing.

in a bad way by the gates. Consider, for example, the
Cy = Czy = 799" gate from the set Eq. (23) (the other
gates in the set behave analogously), and assume that a

small displacement error e "¢ [c f. Eq. (14)] is present
on the first (control) mode prior to performing the gate.

The factor ¢*? commutes with the Cy gate, but since

( P g I) o-i08P _ —i0®P (e—iuf’ ® eiuﬁ) . (24
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we see that the Cy gate spreads a displacement error e’
to the second (target) mode. Even though the error has
spread, small displacements spread to small displacements,
and the error can be corrected by a subsequent round of
error correction. This is exactly analogous to a transver-
sal Cy = C¥" between two binary code blocks of 7 qubits,
where, say, ¢ X errors on the control block can spread to
t X errors on the target block.

In this sense the Clifford gates on GKP codes are fault
tolerant. This is, however, only a statement about an ideal
implementation of a gate such as Eq. (23). In a realis-
tic implementation, where the quadratic interaction 1:194,
stems from an underlying nonlinearity (c.f. Fig. 6), there
will unavoidably be spurious higher-order terms present as
corrections to ]A‘Ig’q;. Such terms might amplify and spread
errors in a bad way, and it is therefore crucial that they are
made as small as possible. Again, it is not expected that
GKP codes can suppress errors arbitrarily. The goal is to
suppress errors to sufficiently low levels that the resource
overhead for the next level of protection is reduced, as
discussed further in Sec. IV.

I11. STATE PREPARATION AND ERROR
CORRECTION

A. State preparation using two-level ancilla

One way to prepare a GKP state is to nondestructively
measure the stabilizers and a corresponding logical Pauli.
For example, a measurement of S‘X and Z, both with +1
outcomes, would correspond to a preparation of the ideal
|0.) state. We discussed how logical Paulis can be mea-
sured using phase estimation in Sec. II D2. These ideas can
be extended to measuring the stabilizers S Y S’Z, and intro-
ducing feedback displacements to steer the state towards
the codespace of an approximate GKP code.

Several protocols have been developed to this end [2,
3,10,31,41,42]. To keep the discussion concrete, we here
focus on the scheme illustrated in Fig. 7, which is the
scheme used in the experimental demonstrations of GKP
codewords in Ref. [3]. Let us first consider in more detail
the circuit labeled “Sharpen.” This is simply a version
of the standard phase-estimation circuit we introduce in
Fig. 4(a) with a feedback displacement used to steer the
state towards a +1 eigenstate of D(¢). The probability
of getting £ outcomes here are, respectively, Pr/»(£) =

% <l + 3(b(§))>. To prepare a state with a target phase

value 6 = 0, we introduce a measurement-dependent dis-
placement of D(4e/2) along a direction orthogonal to
b(;), so that for a &+ outcome an eigenstate state with
eigenvalue ¢ is mapped to one with ¢/®¥¢€)_ This ensures
that & = 0 (mod 2x) is a stable fixed point, while § = 7
(mod 2) is unstable, for sufficiently small €.

Of course, for a fixed €, we can not prepare a phase
arbitrarily close to zero using the above procedure, but

—D D(£$) —
“Sharpen” (©) (+3)
+)
7 D(L$Y) —
“Trim” Dl(e) ( 2 )
+) —e—]st—20
FIG. 7. “Sharpen” and “Trim” protocols used to prepare

approximate GKP codestates, the controlled displacement gate
is defined as in Fig. 4. The parameter € is small with arge =
arg ¢ + /2, such that D(e) is a small displacement orthogonal

to D(;). The § = diag(1,7) gate is the usual phase gate on the
ancilla.

this is also not desirable. In practice, the scheme will be
limited by experimental imperfections, such as unwanted
nonlinearities and dephasing, as the photon number of the
state increases. It is therefore better to directly target an
approximate GKP state as defined in Sec. 11 B, where the
choice of A should be optimized based on experimental
considerations.

It was shown in Ref. [31] that by alternating the phase
estimation of D(¢) (“Sharpen” in Fig. 7) with phase esti-
mation of a small orthogonal displacement D(e) (“Trim”
in Fig. 7) one can prepare an approximate GKP state of
the form Eq. (8), with A ~ /€. The intuition behind the
scheme is that the first step “sharpens the peaks” of the
target GKP state by bringing it closer to a 41 eigenstate
of ﬁ({), while the second step “trims the envelope” of the
state by weakly measuring the orthogonal quadrature [31].

To prepare a logical state, say |6L), one can first alter-
nate many Sharpen-and-Trim cycles of the two stabilizers
S'X, S‘Z to project the state onto the logical subspace. Once
in the codespace, a single phase estimation round of Z =
D(B) suffices to project onto one of the two logical Z-
basis states. This can be done using, for example, either
of the two circuits in Fig. 4. The full protocol is illus-
trated in Fig. 8. Alternatively, one can repeat the logical
Z measurement a few times and postselect on getting iden-
tical outcomes, to increase the preparation fidelity [3,31]
(see also Fig. 3). Finally, a Pauli correction can be applied
if necessary to prepare |6L).

FIG. 8. Preparation of a logical state can be done by alter-
nating “Sharpen” (“S”) and “Trim” (“7”) cycles for the two
stabilizers Sy, Sz to project onto the codespace, and finally per-
form a nondestructive Z measurement (“M”) using, e.g., one of
the two circuits in Fig. 4.
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Various optimizations of the “Sharpen-Trim” scheme
are possible, as well as measurement-free versions. We
refer the reader to Refs. [10,31,52] for further details.
We also note that optimal control methods have success-
fully been used to prepare other bosonic codes [4,5], and
that similar techniques may prove useful for GKP state
preparation as well.

B. Fault tolerance in state preparation

An issue with the scheme illustrated in Fig. 7 (as well
as the Pauli measurement schemes in Fig. 4) is that ancilla
errors can propagate to the GKP code and lead to uncor-
rectable errors. In particular, an ancilla bit flip at a random
time during the controlled displacement of the “Sharpen”
step leads to a, potentially large, random displacement
error. (A bit-flip during the controlled displacement of the
“Trim” step is much less serious as it only leads to a
displacement error of magnitude ~ |€|.) These simple cir-
cuits are, in other words, not fault tolerant to the dominant
error channels, such as relaxation, on the ancilla qubit.

It is noteworthy, however, that there is a certain amount
of built-in robustness in the phase-estimation circuits, in
that phase flips on the ancilla qubit are relatively benign:
Z errors on the ancilla commute with the gates and thus
only lead to measurement errors. For the “Sharpen” circuit
a measurement error only leads to a small displacement of
magnitude |e€/2| in the wrong direction. This will broaden
the GKP peaks, but is not very harmful as long as it does
not happen too often. For the “Trim” circuit, a measure-
ment error will lead to a large displacement D(£¢ /2) in the
wrong direction, however, these displacements are equiva-
lent up to the stabilizer ﬁ(:Ff), and thus does not lead to a
logical error. A measurement error in the final “Measure”
step illustrated in Fig. 8 is more serious, as it leads to a log-
ical error. However, as already mentioned, we may repeat
this measurement to suppress such measurement errors. In
the following, we outline a potential approach to increase
the robustness of these circuits by exploiting the natu-
ral robustness against phase flips of the phase-estimation
protocols.

1. Biased noise ancilla

A few different protocols can be applied for more robust
phase estimation. For example, the approach considered in
Ref. [54] is based on using an extra flag qubit to prevent a
single ancilla error from introducing a large displacement
error in the GKP state. More hardware-efficient robustness
against single-transmon ancilla error can also be achieved
by applying the technique known as x matching [55].
In this approach, the transmon’s |g) and |f') levels are used
as computational states and the transmon-cavity coupling
is engineered so that the GKP resonator is transparent to a
single relaxation error from state |f ) to |e) in the transmon.

The approach we outline here for robust phase estimation
is based on using a biased-noise ancilla qubit [53].

Biased-noise qubits couple asymmetrically with the
environment so that one type of error, such as phase flips
or Pauli-Z errors, is more common than others, such as
bit flips or Pauli-X, Y errors. In such qubits it is conve-
nient to define a quantity called the bias, which is the ratio
of the dominant error and the sum of all other errors n =
p-/ (px + py). For pure-Z noise the bias n = oo, while for
isotropic or depolarizing noise n = 0.5. Many examples of
such biased-noise qubits exists, including the heavy fluxo-
nium qubit [56], the soft 0—r qubit [57], and the Kerr [49]
and dissipative [58] cat qubits. In the trapped-ion imple-
mentation of GKP codes [2], the ancillary pseudospin
states used to control the motional mode naturally has such
a strong bias.

Thanks to the robustness against phase errors, a possi-
ble path towards creating a fault-tolerant state-preparation
scheme is to use a biased-noise ancilla qubit where bit-flip
errors are heavily suppressed [53]. To be able to implement
the circuits in Figs. 4 and 7 fault tolerantly, it is how-
ever crucial that we can perform the required controlled-
displacement gates while preserving a strong suppression
of bit-flip errors. While there are several candidates for
strongly biased noise qubits in the superconducting cir-
cuit platform [56,57,59], here we focus on the Kerr-cat
qubit as an illustrative example, as this provides a particu-
larly straight forward, hardware-efficient, realization of the
operations required for the phase-estimation protocols.

In the Kerr-cat qubit the logical states are superpositions
of coherent states |£) o< |a) & |—a) (|0/1) =~ |Ea)) of the
electromagnetic field stored in a nonlinear oscillator. More
precisely, these states are eigenstates of a Kerr-nonlinear
oscillator in the presence of a two-photon pump: Hey =
—Ka'?a® + Ka?(a™ + a*), where we are working in the
rotating frame of the oscillator where the two-photon pump
is resonant [60]. The cat states are separated from the clos-
est eigenstates by a gap wg,, ~ 4Ka?, and we take o to be
real for simplicity. Crucially, realistic noise channels for
this system, including photon loss, heating, and dephas-
ing, are highly unlikely to cause transitions between the
|0) and |1) states. More precisely, bit flips are exponen-
tially suppressed in o> compared to phase flips leading to
an exponentially large bias in a? [60].

Returning to the circuits in Fig. 7, we first note that
preparation and measurement in the X basis, as well as
the S, ST phase gates, are bias-preserving operations, i.e.,
the effective error channel remains biased towards Z errors
when performing these operations. These operations have
already been demonstrated experimentally for the Kerr-cat
qubit [49]. On the other hand, a controlled displacement
can be implemented with a beam-splitter interaction

Hep = i(gacaicre’ — % aca GGkp), (25)
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where the subscript refers to the cat and GKP mode,
respectively, and g is an (in general complex) inte-
raction strength. To show that this approximately leads
to a conditional displacement, we project the Hamiltonian
onto the logical cat subspace Py = |o) (| + |—ar)(—a):
}_)CatI:ICDPcat =i (g&GKPT - g*&GKP)ant + O*(e_2a2), with
Z.at the logical Pauli-Z operator for the cat qubit (we use
the O*[f(x)] notation to suppress polynomial factors in
x [61]). Evolution under this interaction for a time ¢ thus
leads to a controlled displacement CD({ ), with ¢ = got.
Interestingly, the controlled-displacement gate becomes
both faster and more accurate as we increase «, and thus
the bias of the ancilla.

We note that to implement the optimized measurement
circuit in Fig. 4(b), as well as the optimized stabilizer pro-
tocols in Ref. [31], one also requires a rotation gate of the
form R, = exp(—imw6,/2). This gate is conveniently very
simple to implement for a Kerr-cat qubit. One simply turns
off the two-photon pump used to stabilize the Kerr-cat log-
ical subspace, and let the cat evolve freely under the Kerr
Hamiltonian Hy = —Ka'24? for a time /2K [49,62]. One
might worry that this gate is not bias preserving: A phase
flip prior to, or during, this gate, can be rotated to a bit-
flip error. However, the circuit in Fig. 4(b) is constructed
such that the error that propagates back to the GKP mode
is precisely the logical operator we are trying to measure.
Similarly, for the protocols in Ref. [31] the error is a sta-
bilizer. This is acceptable, and we therefore expect that
these improved measurement and stabilizer protocols also
benefit from a biased noise qubit.

Physically, the Kerr-cat qubit can be implemented in
a tunable nonlinear element such as capacitively shunted
SNAIL, or “SNAILmon” [49]. With an external mag-
netic flux, the SNAIL exhibits both three-wave and
four-wave mixing capabilities. Moreover, the controlled-
displacement Eq. (25), which requires a three-wave mix-
ing interaction between the cat, GKP, and a microwave
pump, can also be activated using the same nonlinear ele-
ment, thus requiring only capacitive coupling between the
SNAIL device and the GKP mode [see Fig. 9(b)]. Such
an interaction between a Kerr-cat and an unencoded oscil-
lator has been demonstrated [49]. This proof-of-principle
demonstration strongly suggests that the Kerr-cat in a
SNAILmon can be used for fault-tolerant GKP state
preparation. Nonetheless, the viability of this approach
depends on the effect of magnetic flux, required to bias
the SNAIL, on the lifetime of three-dimensional (3D)
cavities and requires more experimental exploration [63].
Alternatively, an approach based on high-Q oscillators in
a two-dimensional (2D) architecture must be developed.
Finally, we note that this is exactly the same type of inter-
action required for two-qubit gates between GKP mode, as
discussed in Sec. I1 D3 [c.f. Eq. (23)]. It is thus be possible
to repurpose the same piece of hardware for both gates and
state preparation [see also Fig. 6(a)].

We

(a) (b)

[ ]
% — @

¢ smm——
£, E(t)
E(t) % é%

2wy We — Wy

FIG. 9. Implementation of controlled-displacement gate,
CD({), between a GKP resonator and a transmon (a) and Kerr-
cat realized in a SNAIL (b). The frequencies of the resonator,
transmon, and SNAIL are w., w;, and wy, respectively. The
desired effective interaction for CD gate is (&' + @)Z, where
Z is the Pauli operator of the transmon or Kerr-cat qubit. The
scheme shown in (a) is from Ref. [3] and uses the cross-Kerr
coupling between the transmon and the resonator = xa'aZ. The
underlying principle of the scheme is as follows. In the presence
of the microwave pulse &.(¢), the Hamiltonian of the system
(in a frame rotating at w.) is H = ya'aZ + E.(n@" + a).
In a displaced frame the effective Hamiltonian becomes
D()AD(a) = xataZ + x (ao* +aTa)Z + x|a*Z, where o =
f E.(t)dt. Clearly, we obtain the important interaction for the
CD(¢) gate given by the second term in this equation. In
order to cancel the effect of the other terms, the qubit can be
flipped in the middle using the resonant 7 pulse &;. For more
details see Ref. [3]. In (b), a Kerr-cat qubit is realized in the
SNAIL flux biased at a point where both third- and fourth-order
nonlinearities are large. To realize the qubit Hamiltonian, a
microwave drive & of frequency 2w; is applied to the SNAIL.
Another microwave drive at frequency |w. — w;| is applied to
generate Eq. (25). Due to the three-wave mixing, a photon from
the latter drive is consumed to convert a photon at the SNAIL to
that in the resonator. This effectively creates the desired coupling
o (@' + @)Z between the resonator and the Kerr-cat qubit [53].

C. Error correction with GKP ancillae

In Sec. IIC we briefly discuss the ability of the
GKP code to correct against realistic noise processes in
principle by looking at the quantum-error-correction cri-
teria for displacement errors and performing numerical
simulations using an optimal recovery map. Performing
error correction in practice requires a fault-tolerant and
nondestructive way to measure the stabilizers of the GKP
code. One way to do this is to perform phase estimation
using a two-state ancilla, as we already outline above.
However, this approach has the disadvantage that a sin-
gle bit of information is obtained per ancilla measurement,
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FIG. 10. [Illustration of “Steane” (a) and “Knill” (b) error-

correction circuits. The labels {u, v} next to a rail indicates a
general displacement error e F¢2, and the diagram indicates
how the incoming errors propagate through the circuit. The

two measurements are of the P and Q quadratures of the GKP
code, respectively, and for the correction shifts one uses the
measurement outcomes modulo the GKP lattice spacing /7 [1].

such that several measurements is required to obtain the
continuous-variable GKP syndrome information with high
accuracy. An alternative approach, which is the approach
that has been studied most extensively in the theoretical lit-
erature on GKP codes [1,22,23,25], is to use ancillae that
are themselves prepared in GKP states. Here, phase esti-
mation can be performed in a single shot (assuming we
can perform high-efficiency homodyne detection), with an
accuracy set by the quality of the encoded GKP ancilla
states (and the measurement efficiency).

There are two canonical ways to perform “single-
shot” GKP error correction using GKP-encoded ancillae.
These are essentially bosonic versions of Steane [64] and
Knill [65] error correction, respectively. The two schemes
are illustrated in Fig. 10. As shown in the figure, the
propagation of displacement errors through the two cir-
cuits are essentially equivalent, but the Knill circuit does
not require any active recovery. Here, the measurements,
which contain the syndrome information, are simply used
to determine whether a logical Pauli operator has been
applied to the GKP state in the process of teleporting from
the top to the bottom rail of the circuit [29]. It is not neces-
sary to physically apply any Pauli correction, as it can be
tracked in a Pauli frame [65]. We also note that a version
of the Knill circuit can be performed using beam-splitter
interactions in place of Cy gates [15], and that it was
shown in Refs. [17,25] that this leads to a lower probability
of logical error.

Although the “single-shot” GKP error-correction
schemes are highly efficient in principle, they also have
two clear practical drawbacks: They require preparation
of two additional GKP states per round of error cor-
rection, and they require very high-efficiency quadrature

measurement to be useful. The former itself requires
repeated stabilizer measurements using a two-level ancilla
as discussed in Sec. III A, unless some other method is
developed, and as discussed in Sec. II D, the latter is a
highly nontrivial task that has not yet been demonstrated
on a GKP state. In the next section, we discuss different
approaches to quantum error correction with GKP codes
in a large-scale architecture.

IV. THE BIG PICTURE: SCALABILITY AND
FAULT TOLERANCE

So far, we have seen that either due to finite squeez-
ing, environmental noise, or backaction from the ancilla
used in state preparation, the logical error rate in the GKP
codespace cannot be decreased arbitrarily. In order to cor-
rect for residual errors, the GKP code can be concatenated
with another binary quantum-error-correcting code. A par-
ticularly popular approach is concatenation of GKP code
to the topological surface code [66]. Fault-tolerant error
correction with GKP-surface codes are being studied in
the context of both gate-based [22—25] and measurement-
based quantum computing [16,30,67—70]. Here, we limit
our discussion to the former as it is more commonly used in
the context of the superconducting-circuit and trapped-ion
platforms.

In this approach, each data qubit of the surface code
is replaced by a single-mode GKP code. Such concate-
nation provides two layers of protection. In the first layer
(referred from henceforth as the inner code and denoted
Cckp), the stabilizers S 'y and S > are measured for each GKP
mode M times using additional ancillae. These additional
ancillae can also be GKP encoded, as in Sec. III C, or dis-
crete qubits such as transmons or Kerr-cats, as discussed in
Sec. III B. The ancilla measurement record and details of
the underlying noise model are used to estimate and cor-
rect, as accurately as possible, the noise on each GKP data
mode [22,23,25].

Of course, this procedure will not perfectly remove all
errors. The remaining errors are instead corrected by inter-
spersing the stabilizer measurements of Cgxp with the par-
ity checks of the surface code (referred to henceforth as the
outer code, and denoted Cgyrpace). The surface-code ancil-
lae used to measure these parity checks can themselves be
GKP encoded or discrete qubits.

This approach of concatenating Cgip > Csurface Mmay seem
contrary to the hardware efficiency of GKP codes argued
in the Introduction. After all, at the end we are resort-
ing to a binary surface code, which incurs a substantial
hardware overhead (the surface code has a vanishing code
rate). Nevertheless, if it becomes possible to suppress the
probability of error during logical operations far below the
threshold of Cgyface, @ modest code distance might suf-
fice to reach a target logical error rate required for useful
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FIG. 11. Building blocks of Cgkp > Csyrface With All-GKP sur-
face code and Hybrid-GKP surface code. Of the required oper-
ations, only the controlled-displacement gate between a discrete
qubit and a GKP-encoded qubit have been demonstrated exper-
imentally [2,3]. Not shown in the figure above are single-qubit
gates and measurement of the regular ancilla qubits that may be
required. We assume these are readily available.

quantum computation [25]. In this case, the resource over-
head of quantum hardware and software controls may be
significantly lighter than if Cgyface is directly implemented
with conventional qubits such as transmons.

With this overview, we now give more details on two
possible constructions of the concatenated Cgip > Csurface
code. In one approach, which is also the most widely
studied in the theoretical literature, and is referred to as
the All-GKP surface code, all the data qubits and ancil-
lae used for error correction are GKP encoded [22,23,25].
The other approach takes a hybrid route where the ancillae
are replaced by discrete qubits (e.g., transmons or Kerr-
cats), and is referred to as the Hybrid-GKP surface code
(the two schemes were referred to as Only-Surface-Code-
GKP-Ancilla and All-Regular-Qubit-Ancilla, respectively,
in Ref. [24]). Figure 11 outlines the building blocks of the
two schemes.

A. All-GKP surface code

A possible layout of Cgip > Csurface With GKP-encoded
data and ancilla modes in the cQED architecture is illus-
trated in Fig. 12(a). Steane- or Knill-based error-correction
circuits may be used for Cgkp (c.f. Fig. 10), although the
former is studied more widely. To be concise, we focus on
the square-lattice GKP code, where the probability of X
errors equals that of Z errors, concatenated with the CSS
surface code with the “rotated” layout of Ref. [71].

The parity-check operators for Csurface are of two types:
all X type to detect Z errors and all Z type to detect X
errors. In order to minimize amplification of displacement
errors, the surface-code check operators can be modified

as shown in Fig. 12(b) [23]. Each X -type parity check
involves two X and two X, while each Z-type par-
ity check involves only Z. (Note in contrast to regular
discrete qubits we do not have X = X' and Z = Z' out-
side the GKP codespace). The parity checks of Cgyface
are performed simultaneously using the circuit shown in
Fig. 12(b). As illustrated, each GKP ancilla (shown in blue
in Fig. 12) interacts with four neighboring GKP modes via

Cy, = #1080 gates for the Z checks and a mix of Cy =

¢710%P and Cl = €07 for the X checks. As discussed
earlier, these gates can be implemented via a nonlinear
coupler such as a transmon or SNAIL.

Standard techniques of decoding, for example minimum-
weight perfect matching (MWPM), can be used for error
correction in the surface-code layer. Moreover, the accu-
racy of the decoder can be enhanced by using analog
information from the continuous-variable measurement
outcomes [22-25,67—70]. For example, one can incorpo-
rate the conditional probabilities for Pauli errors given
analog measurement outcomes into the edge weights of the
MWPM problem, resulting in a dynamic matching graph.

Various independent studies have been performed for
estimating the performance of the All-GKP surface code
under slightly different assumptions about noise [22—25].
A common feature of most of these studies is that, in
order to simplify numerical analysis, noise in approximate
GKP states as well as errors introduced during error-
correction operations are modeled as independent Gaus-
sian displacements with standard deviation o, represented
by the channel

1 ~ N
EPa = 5— / Pre PP D)D), (26)

Compared to a general noise channel as in Eq. (15), this
channel is strictly diagonal in the displacement operator
basis. An arbitrary noise channel can be brought closer to
diagonal form in the displacement basis using displace-
ment twirling (but not necessarily following a Gaussian
distribution) [72]. Equation (26) describes, for example, a
noise process with equal loss and heating rates, given by
a master equation p = k (D[a]p + D[a']p) [23,35]. How-
ever, in a realistic system special engineering is required to
make these noise processes equal. The Gaussian displace-
ment channel does not in general represent physical noise
commonly encountered in oscillator systems, such as loss,
dephasing, or heating at arbitrary rates.

The standard deviation o in Eq. (26) determines the
amount of noise in the system. Similarly to how we intro-
duced a squeezing parameter to quantify the quality of
approximate GKP states in Sec. II B, we can introduce a
squeezing parameter S = —101og,,(202) (with the iden-
tification A% = 20°2) to quantify the noise in Eq. (26), with
large S meaning low noise. In the numerical studies in
Refs. [22,23,25], approximate GKP states with squeezing
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(a) Illustration of possible realization of Cgkp > Csurface in cCQED. The yellow and white regions indicate X and Z stabilizer

checks of the surface code. Scaling up an architecture based on high-Q 3D microwave resonators is still a very active area of research.
It is also possible to have high-Q resonators on chip as an alternative to the 3D approach. The purpose of this figure is to indicate the
resources that would be required to implement the widely studied All-GKP surface code. Resonators for GKP states used as data qubits
in the surface code are indicated in orange. The ancilla GKP states required for realizing Steane-based Cgkp and Cgyface are shown in
green and blue, respectively. State preparation, gates, and measurements are mediated by nonlinear couplers, such as a transmon or a
SNAILmon. (b) Stabilizer measurement circuits and gate ordering for surface-code error correction. The controlled-© gate represents

the C’j( gate between the ancilla and data GKP states.

A were modeled by applying the noise channel Eq. (26)
with 0 = A /+/2 to an ideal GKP state. This was done in
order to make the numerics tractable, but the noisy GKP
states defined in this manner are still unphysical (there is no
“envelope” in phase space). In Ref. [24] it was shown that
this model with incoherent displacements underestimates
the logical error compared to the coherent superposition in
Eq. (10) with A? = 202

When the Gaussian displacement channels introducing
errors in the GKP codewords and every element (i.e.,
gates and measurements) of the error-correction circuits
are assumed to be equally noisy, and Steane-based error
correction is used for Cgkp, then the threshold standard
deviation for displacement errors has been found to be
S = 18.6 dB. That is, it becomes possible to realize a
logical qubit with arbitrarily small probability of error
with Cgip > Csurface @S long as the standard deviation for
displacement errors is smaller than approximately 0.09.

On the other hand, if the Gaussian displacement channel
is only applied to the data and ancilla GKP codewords,
while all other operations are assumed to be noiseless, this
threshold is reduced to S = 11.2 dB [23].

Further optimizations are possible, and a recent study
showed that the latter threshold with only state-preparation
noise can be reduced to & =9.9 dB through better
decoding and an optimized error-correction protocol [25].
Beyond improving the threshold, it was shown that a
decoding strategy that makes better use of the ana-
log syndrome information can have a dramatic effect
on the overhead cost to reach a certain logical error
rate.

The largest GKP state prepared experimentally so far
has a squeezing of approximately 10 dB and experimen-
tal limitations on the performance of two-qubit gates and
measurement (c.f. Fig. 3) is largely an open question.
Thus, there is opportunity for theoretical and experimental
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innovations in developing scalable quantum-control meth-
ods for practical implementation of the GKP-surface code
architecture.

One possible path towards easing the threshold require-
ments is by tailoring the GKP code and the surface
code to exploit structure in the noise. In particular, the
more recently tailored surface code (TSC) [73,74] and the
XZZX surface code [75] exhibit ultrahigh thresholds when
the noise channel of the underlying elementary qubits is
biased. Recall the rectangular-lattice GKP states intro-
duced in Sec. I1 A and defined in Eq. (7b). Due to the
phase-space structure of the rectangular lattice, the result-
ing Pauli errors become asymmetric even if the translation
errors from the environment are isotropic resulting in a
biased noise channel. If & > 1 in Eq. (7b), then displace-
ments along the momentum quadrature P is more likely
to be misidentified than displacement along the position
quadrature Q Consequently, after M rounds of GKP error
correction X, Y errors will be far less likely than Z errors.
Thus, the error channel after Cgyp, with a rectangular-GKP
state will be biased with the bias increasingly exponen-
tially with A [76]. Now, the biased noise can be more
accurately corrected if Cgkp is concatenated to the TSC
or the XZZX surface code. A recent work has studied
the rectangular-GKP concatenated to the TSC under a
simplistic noise model where only the data GKP code-
words are subject to a Gaussian displacement channel,
while the ancillas and error-correction circuits are per-
fect [76]. It is known that with such a simplistic noise
model, the threshold standard deviation when using the
square lattice GKP code is 2.3 dB. If instead a rectan-
gular GKP code is used with 7= A% = 3, then as shown
in Ref. [76], the threshold standard deviation increases
and corresponds to a squeezing of approximately 1.7 dB.
Here, » = 3, corresponds to a single-mode squeezing of
10log,,(r) ~ 4.8 dB. For the regular CSS surface code,
another study in contrast found only a marginal improve-
ment in logical error when the ancilla (but not data) qubits
are rectangular [25]. However, more theoretical work is
required to predict if the rectangular-GKP concatenated
to the TSC, XZZX, or another code optimized to exploit
noise bias, provides a practical advantage when realistic
circuit-level noise is considered.

B. Hybrid-GKP surface code

The AII-GKP surface-code scheme may become
resource intensive because auxiliary qubits are required
to prepare the GKP data and ancilla modes, and addi-
tional tunable nonlinear couplers are required to implement
two-qubit gates between these GKP modes. Each Cgkp
and Cguface Syndrome measurement moreover requires
preparation of fresh GKP ancilla states, which is a slow
process [3]. Such extra space-time costs can overwhelm
savings in overheads that one may have otherwise

expected. A more efficient approach may be to replace
some or all of the ancillae with discrete qubits such as a
transmon or a biased Kerr-cat qubit (see Sec. III B). As an
illustrative example, consider Fig. 12 for counting hard-
ware resources. In this set-up a distance d surface code
requires 3@ — 1 high-Q resonators, and 5d*> — 4d nonlin-
ear couplers. Contrast this with @ high-Q cavities and
2d* — 1 nonlinear couplers that would be required to build
a Hybrid-GKP surface code with GKP-encoded data qubits
and discrete qubit (Kerr-cat or transmon) ancillae.

Let us now look at the operations required to imple-
ment such a Hybrid-GKP surface code. Recall that the
controlled-displacement gate CD(¢) is required to mea-
sure the GKP stabilizers. The same gate can also be
used to implement the controlled-Pauli gates between the
regular qubit ancilla and GKP codewords required for
surface-code parity measurements.

Consider, for example, the Z-type check operators. It
can be measured with a discrete ancilla qubit initialized
in the |+) state, followed by Cf)({ ) gates between the
GKP data modes and the ancilla with { = 8, and finally an
X -basis measurement of the ancilla. This can also be
understood as one phase-estimation round of the surface-
code stabilizer, and in analogy with Eq. (18), the probabil-
ity to get an X = +1 outcome is

1

PE) =5

[1 + % ((zzZZ) + <ZTZTZ*‘ZT>)] . @D

Clearly, for ideal GKP states [Eq. (6)], P(+) = 1,0 and
P(—) =0, 1 when (ZZZZ) = +1, respectively, and hence
this procedure can be used for Z-parity checks. In the case
of approximate GKP states, however, a single round of
phase estimation cannot perfectly estimate (ZZZZ), which
leads to measurement errors even when the ancilla is noise-
less. For small A (see Sec. II B) this measurement error
i8S per ~ (1 — ™% /2 ~ 7 A2/2 [24]. The X -type par-
ity checks are measured analogously using the CD(¢) gate
with ¢ = «. This measurement error can in principle be
reduced using the same approach as discussed in Sec. 11 D2
[see Fig. 4(b)] to give per ~ 0.8A® (in the small A
limit) [31,43].

Compared to the All-GKP scheme, where GKP-encoded
ancillae are used, the discrete-qubit ancillae may lead to
higher-fidelity parity checks when a realistic homodyne
measurement efficiency is taken into account. To illus-
trate, consider a GKP state with approximately 14 dB of
squeezing (A = 0.2). In Sec. [ID1 we saw that with a
measurement efficiency of n = 75% (which is still opti-
mistically high for cQED), the error in the direct homodyne
measurement of the ancilla GKP state is approximately
4%. On the other hand, with a discrete qubit ancilla and
modified phase-estimation circuit of Ref. [43], we have
Perr ~ 0.0025%. Of course, the ancilla readout itself is
not perfect, and errors must be added to p. to estimate
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the total error in the surface-code parity check. For an
ancilla such as a transmon, readout error probability <
2% is standard, even with n < 75% [39,77,78]. Thus, the
total measurement infidelity with the discrete qubit ancilla
(approximately 0.0025% + 2% =~ 2%) can still be lower
than that with a GKP-encoded ancilla.

The hardware simplicity of the Hybrid-GKP surface-
code architecture, which requires only CD(¢) gates and
standard qubit operations, makes this approach very
attractive. Nonetheless, a challenge with the hybrid-GKP
approach is to prevent fatal propagation of errors from
the standard qubit ancilla to the encoded GKP states.
Indeed, due to this effect, the current performance of the
controlled-displacement gate, the building block of the
hybrid scheme, is limited by the relaxation time, 7 of
the transmon ancilla [3,62]. This limitation indicates that it
will not be possible to increase the lifetime of a GKP code-
word much beyond the 7} of the transmon. Fortunately,
it is possible to overcome this challenge by replacing the
transmon with a biased-noise ancilla such as a Kerr-cat,
as we discuss in Sec. III B. This promises a hardware-
efficient solution to the problem of ancilla-induced errors
and motivates further study to quantify the performance of
the hybrid setup.

Finally, it is not necessary that all the ancillae in the
GKP-surface code are of the same kind, that is, all GKP
encoded or all discrete qubit ancillae. Another possibil-
ity is that both the data and syndrome qubits of Cgyface
are GKP-encoded, while discrete qubit ancillae are used to
perform the Cgkp stabilizer measurements and phase esti-
mation on the GKP-encoded syndrome qubits. Depending
on the properties and performance of operations, we may
have an optimized code where some ancillae are discrete
qubits while the others are GKP encoded.

C. Universality

So far, we have restricted the discussion to error correc-
tion in the Cgkp > Csurface €0de, but do not discuss how uni-
versal computation may be performed in this concatenated
architecture. An attractive feature of the surface code is
that all logical Clifford operations can be implemented via
lattice surgery requiring only (single- or two-qubit) logical
Pauli measurements [16,79,80]. In surface codes with reg-
ular qubits, these measurements require nearest-neighbor,
physical controlled-Pauli gates between ancilla and data
qubits [80]. We have seen how to implement controlled-
Pauli gates between two GKP codewords or between a
GKP codeword and a discrete qubit [see Eq. (23), Figs. 6
and 9]. Hence, we can also employ lattice surgery for
implementing logical Clifford gates in the Cgkp > Csurface
code.

Combined with state preparation of GKP magic states
|A;) = T|+.), logical injection and distillation [81,82]
(both of which only require error correction and Clifford

encoded GKP state |0r) —4 |vL)

I
1)) —e

qubit ancilla

FIG. 13. One-bit teleportation circuit to teleport an arbitrary
state from a two-level ancilla (bottom) to an encoded GKP state
(top). The Cy gate is implemented by a controlled displace-
ment CD(a). This can be used for preparation of arbitrary states,
including magic states, assuming we have universal control over
the ancilla.

gates) provides the ability to perform universal quantum
computation in the GKP-concatenated surface code. There
are several ways to prepare GKP magic states, including
using only GKP Pauli states and vacuum as a resource
by exploiting the continuous variable nature of the state
space [83], but the simplest approach is to use a one-bit
teleportation circuit as shown in Fig. 13, which allows us
to teleport an arbitrary state from a two-level ancilla to the
GKP code.

V. SUMMARY AND OUTLOOK

Implementation of the GKP code was once considered,
by many, to be beyond impossible. As pointed out by
Daniel Gottesman at the Byron Bay Quantum Workshop
in 2020—a workshop dedicated to the 20th anniversary
of the GKP code—the authors were aware that the main
challenge was going to be the first step of realizing the
codewords themselves and the subsequent steps of realiz-
ing gates, measurements, etc. would be comparatively sim-
pler. Technological developments since 2001 have made
error correction with the GKP code a reality, and this
success has inspired more exotic strategies for error correc-
tion [84,85]. Keeping current and near-future technology
in mind, in this Perspective, we explore the prospect of
scalable, fault-tolerant quantum error correction with GKP
states in a cQED architecture. The most intriguing open
question in this direction is whether error correction with
GKP states can be made more resource efficient in prac-
tice compared to schemes based on conventional qubits.
Below we summarize some open theoretical and experi-
mental challenges that must be addressed to answer this
question.

One must develop high-fidelity operations, including
state-preparation, multiqubit gates, and measurement for
GKP states. The fidelity must be better than those of con-
ventional unencoded qubits in the same platform. At the
very least, the fidelity should not be limited by decoher-
ence in the auxiliary discrete qubits used for initializa-
tion or couplers used for gates. We identify three central
challenges in this respect, that can serve as milestones on
the path towards a scalable and hardware-efficient quantum
computer with GKP-encoded qubits:
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1. State preparation: One must be able to prepare
approximate GKP codewords with a sufficiently
small A, and ensure that the probability of logical
errors on the GKP code, e.g., propagating from the
ancilla qubit used in the state preparation, is exceed-
ingly low. Since the goal is to outperform the best
physical qubit alternatives, specifically transmons
and trapped ions, the probability of a logical error
in state preparation must be low compared to error
rates in these systems. In our view, a biased noise
ancilla, such as a Kerr-cat qubit, is promising in this
respect, but further analysis is needed to quantify the
quality of the GKP states that can be prepared with
this approach.

2. Gates: To be able to implement high-fidelity gates as
discussed in Sec. I1 D3 in practice, there are several
targets that must be met simultaneously. One must
be able to implement pristine two-mode Hamil-
tonians of the form Hj 4 o ePabt + e%ab + H.e.,
while keeping any spurious nonlinear terms mini-
mal, and moreover, the two-mode interaction must
be switched from near zero to a sufficiently large
value such that the gates are fast compared to all
decoherence rates. It is crucial that performing these
gates does not introduce errors that the GKP code
is poor against. In particular, while the GKP is
expected to be excellent against loss (and heating),
this is not necessarily true for other natural types of
noise, such as dephasing (c.f. Fig. 2) and spurious
nonlinearities.

3. Measurements: As we have shown in Sec. IIDI,
a standard homodyne measurement is unlikely to
be sufficiently high fidelity to give GKP codes an
advantage. Here, further ideas are needed. Either the
effective homodyne measurement efficiency has to
be increased (probably past 90%) using an amplifi-
cation step prior to release to a standard microwave
measurement chain, or one can follow the route of
performing phase estimation with a discrete qubit
ancilla. It remains to be seen how low the GKP
measurement error can be made in practice.

Along with measurement and control, efforts must be
devoted to developing technology for scaling up either a
3D cQED architecture, or an architecture based on high-
QO resonators on chip. There are also open theoretical
questions about how to design such a large-scale architec-
ture. We discuss two different approaches at a high level,
the All-GKP surface code and the Hybrid-GKP surface
code. Several numerical studies have been performed on
the All-GKP surface code, showing promising thresholds
and subthreshold behavior [22-25]. However, the noise
models used in these studies are rather unrealistic, and
more work is needed to model realistic noise accurately.
For the Hybrid-GKP surface code, although we think it

is quite promising in terms of hardware efficiency, very
little quantitative analysis has been done, and its poten-
tial is largely unexplored at this stage. Arguably, the most
pertinent question here is whether one will ultimately be
limited by the discrete qubit ancillae used to stabilize
the GKP-encoded qubits and perform syndrome extrac-
tion, and consequently whether the Hybrid-GKP approach
can have a significant advantage over a more conven-
tional scheme using only discrete qubits everywhere. For
example, if biased noise qubits are used as ancillae, one
should note that an approach based on using such qubits as
both ancillae and data qubits also appears very promising
[86-88].

There are further avenues of research we do not touch on
in this Perspective, but that nonetheless seem very promis-
ing. Alternatively to active GKP error correction, it may
be advantageous to explore passive error-correction tech-
niques where the GKP states are stabilized via Hamiltonian
engineering [72,89,90]. One can also consider alternative
concatenation schemes. For example, surface-code vari-
ants tailored to the specific noise structure of the GKP
codewords may be used. In particular, biased-noise tai-
lored surface code such as the XZZX surface code [75]
or tailored surface code [73,74,76], are promising candi-
dates for a rectangular-lattice or squeezed GKP code. More
work is required to estimate the performance of such an
architecture when realistic circuit-level noise is consid-
ered. Other topological codes might offer some advantages
over the surface code when it comes to logical gates. For
example, the 2D color code has a transversal set of single-
qubit Clifford gates. As we show that single-qubit Clifford
gates on GKP codes can be done in software, this implies
that logical single-qubit Clifford gates on the color code
level can be done in software as well. This may lead to
some overhead savings for lattice surgery [80,91]. In gen-
eral, one should follow the design principle of tailoring the
overall fault-tolerant scheme to exploit the strengths of the
underlying elementary qubits, and further research in this
direction is warranted. Finally, concatenation with con-
ventional quantum-error-correcting codes is not the only
path towards scalability. It is possible that there is a better
scheme where k logical qubits are encoded in n physi-
cal modes more directly, i.e., without concatenation with a
binary code. Only a small number of works have explored
this avenue so far [1,92,93].

With challenges, come opportunities, and with the accel-
erating pace of technological and theoretical developments
the future looks bright for practical quantum computation
with GKP codes.
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