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The number of measurements demanded by hybrid quantum-classical algorithms such as the variational
quantum eigensolver (VQE) is prohibitively high for many problems of practical value. For such problems,
realizing quantum advantage will require methods that dramatically reduce this cost. Previous quantum
algorithms that reduce the measurement cost (e.g., quantum amplitude and phase estimation) require error
rates that are too low for near-term implementation. Here we propose methods that take advantage of the
available quantum coherence to maximally enhance the power of sampling on noisy quantum devices,
reducing the measurement number and runtime compared to the standard sampling method of the VQE.
Our scheme derives inspiration from quantum metrology, phase estimation, and the more recent “alpha-
VQE” proposal, arriving at a general formulation that is robust to error and does not require ancilla qubits.
The central object of this method is what we call the “engineered likelihood function” (ELF), used for
carrying out Bayesian inference. We show how the ELF formalism enhances the rate of information gain
in sampling as the physical hardware transitions from the regime of noisy intermediate-scale quantum
computers to that of quantum error—corrected ones. This technique speeds up a central component of
many quantum algorithms, with applications including chemistry, materials, finance, and beyond. Similar

to the VQE, we expect small-scale implementations to be realizable on today’s quantum devices.
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I. INTRODUCTION

Which quantum algorithms will deliver practical value
first? A recent flurry of methods that cater to the limita-
tions of near-term quantum devices have drawn significant
attention. These methods include the variational quan-
tum eigensolver (VQE) [1-4], the quantum approximate
optimization algorithm [5] and variants [6], the varia-
tional quantum linear systems solver [7-9], other quantum
algorithms leveraging the variational principles [10], and
quantum machine learning algorithms [11—13]. In spite of
such algorithmic innovations, many of these approaches
have appeared to be impractical for commercially rele-
vant problems owing to their high cost in terms of the
number of measurements [2,14] and hence runtime of
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the expectation value estimation subroutine. Through an
extensive benchmarking study of the VQE algorithm [15],
it was shown that, for a set of molecules having industrial
relevance, the VQE is very unlikely to yield an advantage
over state-of-the-art quantum chemistry methods. Unfortu-
nately, methods offering a quadratic speedup over the VQE
in the runtime of the expectation value estimation subrou-
tine, such as phase estimation, demand quantum resources
that are far beyond the reach of near-term devices for
moderately large problem instances [16].

Expectation value estimation is also a building block
for many nonvariational quantum algorithms that have
high-impact applications. Unfortunately, the standard ver-
sions of these algorithms lie out of reach for near-term
quantum computers, in part due to the coherence require-
ments needed to implement estimation subroutines. Such
techniques include quantum algorithms for Monte Carlo
estimation [17] and quantum algorithms for solving lin-
ear systems of equations [18,19]. These algorithms find
application in finance, engineering, and machine learning.
Thus, there is strong motivation for developing estima-
tion methods that make these techniques more amenable
to near-term implementation.

Recently, the method of “«a-VQE” [20] was proposed
for interpolating between the VQE and phase estimation
in terms of the asymptotic trade-off between sample count
and quantum coherence. The basic idea is to start from
the general framework of the VQE, namely the iterative
optimization of the energy expectation that is a sum of
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individual operator expectations, and proceed to estimate
each individual operator with a Bayesian variant of the
overlap estimation algorithm [21] that shares the same sta-
tistical inference backbone with known Bayesian parame-
ter estimation schemes [22-25]. While phase estimation is
commonly regarded as a quantum algorithm intended for
fault-tolerant quantum computers, previous works [20,25]
have demonstrated that in a noisy setting, Bayesian phase
estimation can still yield quantum advantages in sampling.
For instance, in Ref. [25, Sec. IIl A] it is shown that depo-
larizing noise reduces but does not eliminate the ability
of the likelihood function to distinguish between different
possible values of the parameter to be estimated.

This motivates the central question of our work: with
realistic, noisy quantum computers, how do we maximize
information gain from the coherence available to speed up
expectation value estimation, and in doing so, speed up
algorithms such as the VQE that rely on sampling? We note
that this question is not only urgently relevant in the current
era of noisy quantum devices without quantum error cor-
rection, but remains relevant for error-corrected quantum
computation.

In this work, we investigate the impact of gate and
measurement-readout error on the performance of quan-
tum estimation tasks such as amplitude estimation and
expectation value estimation. Note that the standard for-
mulation of amplitude estimation [26] is equivalent to
estimating the expectation value of an observable with
eigenvalues =1 with respect to a quantum state generated
by a given circuit. We introduce a simple noise model and
show that the typical sample-generation scheme is hin-
dered by a phenomenon we refer to as “dead spots” in
the likelihood function. Motivated by these findings, we
develop the framework of engineered likelihood functions
(ELFs), in which signal processing techniques are used to
boost the information gain per sample during the infer-
ence process of estimation. We develop several algorithms
for the framework of engineered likelihood functions and
investigate their performance with simulations. Finally, we
develop a model for the runtime performance of these
estimation algorithms and discuss the implications for
near-term and far-term quantum computing.

The remainder of the paper is organized as follows. The
remaining subsections of the Introduction review relevant
prior work on quantum estimation and describe our main
results in more detail. In Sec. II, we present a concrete
example of our scheme for readers who wish to glean only
a first impression of the key ideas. Subsequent sections
then expand on the general formulation of our scheme. In
Sec. III we describe in detail the general quantum circuit
construction for realizing ELFs, and analyze the struc-
ture of the ELF in both noisy and noiseless settings. In
addition to the quantum circuit scheme, our scheme also
involves (1) tuning the circuit parameters to maximize
information gain, and (2) Bayesian inference for updating

the current belief about the distribution of the true expec-
tation value. In Sec. IV we present heuristic algorithms for
both. We then show numerical results in Sec. V, comparing
our approach with existing methods based on Chebyshev
likelihood functions (CLFs). In Sec. VI, we derive a math-
ematical model for the runtimes of our algorithms on noisy
devices. We conclude in Sec. VII with implications of our
results from a broad perspective of quantum computing.

A. Prior work

Evaluating the expectation value of an operator P with
respect to a quantum state |4) is a fundamental element
of quantum information processing. In the simplest set-
ting where samples are drawn repeatedly by measuring
the same operator P on the same quantum state |4), the
measurement process is equivalent to a sequence of inde-
pendent Bernoulli experiments. Yielding an estimate of
the expectation value within error ¢ (with high probabil-
ity) requires the number of samples to scale as O(1/g?).
We highlight the following key points regarding quantum
estimation that are relevant to the context of this work.

1. Cost scaling improvement using phase estima-
tion. Quantum effects introduce the opportunity to
asymptotically accelerate the measurement process.
In particular, there is a set of schemes [21] based
on quantum phase estimation that is able to reduce
the sample complexity to O(log(1/¢)). This satu-
rates the information-theoretical lower bound for the
number of samples since in order to determine a
bounded quantity to resolution & one must be able
to distinguish O(1/¢) different values, requiring at
least Q2(log(1/¢e)) bits [24]. However, such opti-
mal sample complexity comes at the cost of O(1/¢)
many coherent quantum operations. This trade-off
between sample complexity and quantum coher-
ence is also well understood in quantum metrology
[27,28].

2. Amplitude estimation and generalized reflections.
Phase estimation is closely related to the task of
amplitude estimation [26] with many of the per-
formance guarantees of the former applying to
the latter. In its original definition, amplitude esti-
mation is the problem of evaluating the quantity
(A|P+|A4), where P, is a projection operator and
|4) = A|0") is an ansatz state. This problem is
essentially equivalent to estimating the expectation
value (A4|P|A), where P = 2P, — I is a reflection
operator. Brassard et al. [26] showed that amplitude
estimation can be solved by running phase esti-
mation on the Grover iterate U = (2|4)(A| — )P
with initial state |4). Namely, the desired amplitude
information is encoded in the eigenvalues of the
unitary operator U. Subsequent works demonstrated
[29] that using generalized reflection operators [i.e.,

010346-2



MINIMIZING ESTIMATION RUNTIME...

PRX QUANTUM 2, 010346 (2021)

those with a phase parameter ¢ such that R, = (1 —
e¥)|4)(A| — 1 or R, = (1 — €¥)P, — ], one can
realize a much larger set of SU(2) rotations in the
subspace span{|4), P|A)} than with only common
reflection operators. The set of SU(2) rotations real-
izable with such generalized construction has also
been rigorously characterized [30] and later used
for some of the most advanced Hamiltonian simula-
tion algorithms such as qubitization [31] and signal
processing [32].

3. Bayesian inference perspective. The problem of
expectation value estimation can be framed as a
parameter estimation problem, common in statis-
tical inference. In fact, previous work (for exam-
ple, Ref. [3, Sec. IV A]) has already pointed out
a Bayesian perspective for considering the stan-
dard sampling process for VQE algorithms. The
general setting is first to treat the operator expecta-
tion IT = (4|P|4) as the parameter to be estimated.
Then, a parameterized quantum circuit V(0) that
may be related to |4) and P is constructed. The
ability to execute the circuit and collect measure-
ment outcome d translates to the ability to sam-
ple from a likelihood function p(d|0,I1). For a
given prior p(IT) representing the current belief
of the true value of IT, Bayesian inference uses
a measurement outcome d to produce (or update
the prior to) a posterior_distribution p(Il|d) =
p(d|l'[,9)p(1'[)/[fp(d|l'[,Q)p(l'l)dl'l]. For the set-
tings considered in this paper, as well as in previous
works [22-25], the prior and posterior distributions
are maintained on the classical computer, while
sampling from the likelihood function involves
using a quantum device.

The combination of phase estimation and the Bayesian
perspective gives rise to Bayesian phase estimation tech-
niques [24,25,33] that are more suitable for noisy quantum
devices capable of realizing limited-depth quantum cir-
cuits than earlier proposals [34]. The goal of Bayesian
phase estimation is to estimate the phase 6 = arccos(I1)
in an eigenvalue e of the unitary U. The quantum circuits
used in this algorithm yield measurement outcomes with
likelihoods given by

L+ (=D‘T, (1)
2 b

p(dlm,TT) = (1

where d € {0,1} and 7, (IT) = cos[marccos(IT)] is the
mth-degree Chebyshev polynomial, found in many set-
tings beyond Bayesian phase estimation (cf. Refs. [22,
Eq. 2], [23, Eq. 1], [25, Eq. 2], and [20, Eq. 4]). In
Ref. [23] the exponential advantage of Bayesian infer-
ence with a Gaussian prior over other nonadaptive sam-
pling methods is established by showing that the expected

posterior variance o decays exponentially in the number of
inference steps. Such exponential convergence is at a cost
of O(1/0) amount of quantum coherence required at each
inference step [23]. Such scaling is also confirmed in Ref.
[25] in the context of Bayesian phase estimation.

Combining the above observations one may devise a
Bayesian inference method for expectation value esti-
mation that smoothly interpolates between the standard
sampling regime and phase estimation regime. This is
proposed in Ref. [35] as “a-VQE,” where the asymp-
totic scaling is O(1/&%) with the extremal values of o =
2 corresponding to the standard sampling regime (typi-
cally realized in the VQE) and o = 1 corresponding to
the quantum-enhanced regime where the scaling reaches
the Heisenberg limit (typically realized with phase estima-
tion). By varying the parameters for the Bayesian inference
one can also achieve « values between 1 and 2. The lower
the o value, the deeper the quantum circuit needed for
Bayesian phase estimation. This accomplishes the trade-
off between quantum coherence and asymptotic speedup
for the measurement process (point 1 above).

It is also worth noting that phase estimation is not the
only paradigm that can reach the Heisenberg limit for
amplitude estimation [36—38]. In Ref. [36] the authors con-
sidered the task of estimating the parameter 6 of a quantum
state py. A parallel strategy is proposed where m copies of
the parameterized circuit for generating py, together with
an entangled initial state and measurements in an entan-
gled basis, are used to create states with the parameter
0 amplified to m6. Such amplification can also give rise
to likelihood functions that are similar to that in Eq. (1).
In Ref. [37] it is shown that with randomized quantum
operations and Bayesian inference one can extract infor-
mation in fewer iterations than classical sampling even in
the presence of noise. In Ref. [38] quantum amplitude esti-
mation circuits with varying numbers m of iterations and
numbers N of measurements are considered. A particu-
larly chosen set of pairs (m, N) gives rise to a likelihood
function that can be used for inferring the amplitude to
be estimated. The Heisenberg limit is demonstrated for
one particular likelihood function construction given by
the authors. Both works [37,38] highlight the power of
parameterized likelihood functions, making it tempting to
investigate their performance under imperfect hardware
conditions. As will become clear, although the methods we
propose can achieve Heisenberg-limit scaling, they do not
take the perspective of many previous works that consider
interfering many copies of the same physical probe.

B. Main results

In this work we focus on estimating the expectation
value [T = (4|P|A4) where the state |4) can be prepared by
a circuit 4 such that |4) = 4|0") for some integer n > 1.
We consider a family of quantum circuits such that, as
the circuit deepens with more repetitions of A4, it allows

010346-3



WANG, KOH, JOHNSON, and CAO PRX QUANTUM 2, 010346 (2021)

TABLE I. Comparison of our scheme with relevant proposals that appear in the literature. Here the list of features include whether
the quantum circuit used in the scheme requires ancilla qubits in addition to qubits holding the state for amplitude estimation or phase
estimation, whether the scheme uses Bayesian inference, whether any noise resilience is considered, whether the initial state is required
to be an eigenstate, and whether the likelihood function (LF) is fully tunable like ELFs proposed here or restricted to CLFs.

Bayesian Noise Fully tunable Requires Requires
Scheme inference consideration LFs ancilla eigenstate
Knill et al. [21] No No No Yes No
Svore et al. [24] No No No Yes Yes
Wiebe and Grenade [25] Yes Yes No Yes Yes
Wang et al. [20] Yes Yes No Yes Yes
O’Brien et al. [33] Yes Yes No Yes No
Zintchenko and Wiebe [37] No Yes No No No
Suzuki et al. [38] No No No No No
This work (Sec. I1I) Yes Yes Yes No No
This work (Appendix D) Yes Yes Yes Yes No

for likelihood functions that are polynomial in IT of ever
higher degree. As we demonstrate in the next section with
a concrete example, a direct consequence of this increase
in polynomial degree is an increase in the power of infer-
ence, which can be quantified by Fisher information gain at
each inference step. After establishing this “enhanced sam-
pling” technique, we further introduce parameters into the
quantum circuit and render the resulting likelihood func-
tion tunable. We then optimize the parameters for maximal
information gain during each step of inference. See Table I
for a comparison of our scheme with relevant proposals
that appear in previous literature. The following lines of
insight emerge from our efforts.

1. The role of noise and error in amplitude estima-
tion. Previous works [20,25,33,37] have revealed
the impact of noise on the likelihood function and
the estimation of the Hamiltonian spectrum. Here
we investigate the same for our scheme of ampli-
tude estimation. Our findings show that, while noise
and error do increase the runtime needed for produc-
ing an output that is within a specific statistical error
tolerance, they do not necessarily introduce system-
atic bias in the output of the estimation algorithm.
Systematic bias in the estimate can be suppressed
by using active noise-tailoring techniques [39] and
calibrating the effect of noise.

We have performed simulation using realistic
error parameters for near-term devices and discov-
ered that the enhanced sampling scheme can outper-
form the VQE in terms of sampling efficiency. Our
results have also revealed a perspective on tolerating
error in quantum algorithm implementation where
higher fidelity does not necessarily lead to bet-
ter algorithmic performance. For fixed gate fidelity,
there appears to be an optimal circuit fidelity around
the range of 0.5—0.7 at which the enhanced scheme
yields the maximum amount of quantum speedup.
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2. The role of likelihood function tunability. Param-

eterized likelihood functions are centerpieces of
phase estimation or amplitude estimation routines.
To our knowledge, all of the current methods focus
on likelihood functions of the Chebyshev form
[Eq. (1)]. For these CLFs, we observe that in the
presence of noise there are specific values of the
parameter I1 (the “dead spots”) for which the CLFs
are significantly less effective for inference than
other values of Il. We remove such dead spots by
engineering the form of the likelihood function with
generalized reflection operators (point 2 in Sec. I)
whose angle parameters are made tunable.

. Runtime model for estimation as error rates

decrease. Previous works [20,38] have demonstrated
smooth transitions in the asymptotic cost scaling
from the O(1/&?) of the VQE to O(1/¢) of phase
estimation. We advance this line of thinking by
developing a model for estimating the runtime ¢, to
target accuracy ¢ using devices with degree of noise
A € [0,00) (cf. Sec. VI):

The model interpolates between the O(1/¢) scaling
and O(1/&?) scaling as a function of A. Such bounds
also allow us to make concrete statements about the
extent of quantum speedup as a function of hard-
ware specifications such as the number of qubits
and two-qubit gate fidelity, and therefore estimate
runtimes using realistic parameters for current and
future hardware.
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II. A FIRST EXAMPLE

There are two main strategies for estimating the expec-
tation value (4|P|4) of some operator P with respect
to a quantum state |4). The method of quantum ampli-
tude estimation [40] provides a provable quantum speedup
with respect to certain computational models. However, to
achieve precision ¢ in the estimate, the circuit depth needed
in this method scales as O(1/¢), making it impractical for
near-term quantum computers. The variational quantum
eigensolver uses standard sampling to carry out amplitude
estimation. Standard sampling allows for low-depth quan-
tum circuits, making it more amenable to implementation
on near-term quantum computers. However, in practice,
the inefficiency of this method makes the VQE impracti-
cal for many problems of interest [2]. In this section we
introduce the method of enhanced sampling for ampli-
tude estimation. This technique draws inspiration from
quantum-enhanced metrology [41] and seeks to maximize
the statistical power of noisy quantum devices. We moti-
vate this method by starting from a simple analysis of
standard sampling as used in the VQE. We note that,
although the subroutine of estimation is a critical bottle-
neck, other aspects of the VQE algorithm also must be
improved, including the optimization of the parameters in
parameterized quantum circuits [42—45].

The energy estimation subroutine of the VQE estimates
amplitudes with respect to Pauli strings. For a Hamilto-
nian decomposed into a linear combination of Pauli strings
H = Zj ;P and “ansatz state” |4), the energy expec-
tation value is estimated as a linear combination of Pauli
expectation value estimates

J

where f[_, is the (amplitude) estimate of (A4|P;|A4). The
VQE uses the standard sampling method to build up Pauli
expectation value estimates with respect to the ansatz
state, which can be summarized as follows. Prepare |4)
and measure operator P receiving outcome d € {0, 1}.
Repeat this M times, receiving k outcomes labeled 0 and
M — k outcomes labeled 1. Estimate IT = (4|P|A) as =
[k— M —k)]/M.

We can quantify the performance of this estimation
strategy using the mean squared error of the estimator as
a function of time t = TM, where T is the time cost of
each measurement. Because the estimator is unbiased, the
mean squared error (MSE) is simply the variance in the
estimator,

. 1 — 112
MSE(]) = Y 4)

For a specific mean squared error MSE(IT) = ¢2, the run-
time of the algorithm needed to ensure mean squared error

1 — I1?
82

t,=T . (5)

The total runtime of energy estimation in the VQE is
the sum of the runtimes of the individual Pauli expecta-
tion value estimation runtimes. For problems of interest,
this runtime can be far too costly, even when certain par-
allelization techniques are used [46]. The source of this
cost is the insensitivity of the standard sampling estimation
process to small deviations in IT: the expected informa-
tion gain about IT contained in the standard-sampling
measurement outcome data is low.

Generally, we can measure the information gain of an
estimation process of M repetitions of standard sampling
with the Fisher information

9 2
Iy (T = Ep [(ﬁ 1ogIP(D|n)> }

82

1 9 2
- ;an) (Tnm'm) - ©

where D = {d,,d,,...,dy} is the set of outcomes from
M repetitions of the standard sampling. The Fisher infor-
mation identifies the likelihood function P(D|IT) as being
responsible for information gain. We can lower bound the
mean squared error of an (unbiased) estimator with the
Cramer-Rao bound

MSE(T) >

. 7
Iy (TD) @

Using the fact that the Fisher information is additive in
the number of samples, we have I),(IT) = MI,(I1), where
I,(IT) = 1/(1 — I1?) is the Fisher information of a single
sample drawn from likelihood function P(d|IT) =[1 +
(—1)?11]/2. Using the Cramer-Rao bound, we can find a
lower bound for the runtime of the estimation process as

te = W, (8

which shows that in order to reduce the runtime of an esti-
mation algorithm, we should aim to increase the Fisher
information.

The purpose of enhanced sampling is to reduce the run-
time of amplitude estimation by engineering likelihood
functions that increase the rate of information gain. We
consider the simplest case of enhanced sampling, which
is illustrated in Fig. 1. To generate data, we prepare the
ansatz state |4), apply the operation P, apply a phase flip
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Standard sampling

|0">I A I P

Enhanced sampling (L=1)

Standard
Enhanced

P(O|IT)

|0">I AI P IATI

FIG. 1.

H 1
ROIAIP

Quantum circuits for standard sampling (used in the VQE) and for the simplest nontrivial version of enhanced sampling,

along with their corresponding likelihood functions. The blocks represent unitary transformations, while the caps at the left and right
indicate state preparation and measurement, respectively. Enhanced sampling can yield a larger statistical power in this estimation of
IT = (A|P|A). The likelihoods of the outcome data in enhanced sampling can depend more sensitively on the unknown value IT than
they do in standard sampling. This increased sensitivity can reduce the runtime needed to achieve a target average error in the estimate

of IT.

about the ansatz state, and then measure P. The phase flip
about the ansatz state can be achieved by applying the
inverse of the ansatz circuit 4!, applying a phase flip
about the initial state Ry = 2|0")(0"| — I, and then reapply-
ing the ansatz circuit 4. In this case, the likelihood function
becomes

1 4+ (=1)“ cos[3 arccos(IT)]
2
1 4+ (—=D)@r1’ — 31)
5 )

P(d|TT)

)

The bias is a degree-3 Chebyshev polynomial in IT. We
refer to such likelihood functions as Chebyshev likelihood
functions.

In order to compare the Chebyshev likelihood func-
tion of enhanced sampling to that of standard sam-
pling, we consider the case of IT = 0. Here, P(0|IT =
0) = P(1|TT = 0) and so the Fisher information is pro-
portional to the square of the slope of the likelihood
function

:) 2

As seen in Fig. 1, the slope of the Chebyshev likelihood
function at IT = 0 is steeper than that of the standard

9P(d = 0|TT)

T (10)

11(1'I=0)=4<

sampling likelihood function. The single-sample Fisher
information in each case evaluates to

1
9 enhanced,

standard,

11(11:0):{ (11

demonstrating how a simple variant of the quantum circuit
can enhance information gain. In this example, using the
simplest case of enhanced sampling can reduce the num-
ber of measurements needed to achieve a target error by
at least a factor of 9. As we discuss later, we can fur-
ther increase the Fisher information by applying L layers
of P o A" o Ry o A before measuring P. In fact, the Fisher
information 7, (IT) = 2L + 1)?/(1 — I1?) = O(L?) grows
quadratically in L.

We have yet to propose an estimation scheme that
converts enhanced sampling measurement data into an
estimation. One intricacy that enhanced sampling intro-
duces is the option to vary L as we are collecting mea-
surement data. In this case, given a set of measurement
outcomes from circuits with varying L, the sample mean
of the 0 and 1 counts loses its meaning. Instead of using
the sample mean, we use Bayesian inference to process
the measurement outcomes into information about I1. In
Sec. III B we describe the use of Bayesian inference for
estimation.

At this point, one may be tempted to point out that
the comparison between standard sampling and enhanced
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sampling is unfair because only one query to A4 is used
in the standard sampling case while the enhanced sam-
pling scheme uses three queries of A. It seems that if
one considers a likelihood function that arises from three
standard sampling steps, one could also yield a cubic poly-
nomial form in the likelihood function. Indeed, suppose
one performs three independent standard sampling steps,
yielding results x,x,,x3 € {0, 1}, and produces a binary
outcome z € {0, 1} classically by sampling from a distribu-
tion P(z|x1, x>, x3). Then the likelihood function takes the
form

P(z|IT) = Z P(zlx1, x2,x3)P(Cxy1, x2, x3|IT)

X1X2X3

3 i 3—i
3 1+11 1—-11
:,;“"(i)( 2 )( 2 ) - (12

where each «; € [0, 1] is a parameter that can be tuned clas-
sically through changing the distribution P(z|x, x5, x3).
More specifically, o =3, o vneyepr)=i PEX1,X2,X3),
where A(xx,x3) is the Hamming weight of the bit string
x1x2x3. Suppose that we want P(z = 0|IT) to be equal to
P(d = 0|IT) in Eq. (9). This implies that g = 1, o} = —2,
ar = 3, and a3 = 0, which is clearly beyond the classi-
cal tunability of the likelihood function in Eq. (12). This
evidence suggests that the likelihood function arising from
the quantum scheme in Eq. (9) is beyond classical means.

As the number of circuit layers L is increased, the time
per sample T grows linearly in L. This linear growth in the
circuit layer number, along with the quadratic growth in

1.0 | === Standard =
=== Enhanced

=== Engineered

0.8

0.2

0.0 1

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Likelihood function comparison

Fisher information leads to a lower bound on the expected

runtime,
t, € Q !
&€ LSZ >

assuming a fixed-L estimation strategy with an unbi-
ased estimator. In practice, the operations implemented on
the quantum computer are subject to error. Fortunately,
Bayesian inference can incorporate such errors into the
estimation process. As long as the influence of errors on
the form of the likelihood function is accurately modeled,
the principal effect of such errors is only to slow the rate of
information gain. Error in the quantum circuit accumulates
as we increase the number of circuit layers L. Conse-
quently, beyond a certain number of circuit layers, we
receive diminishing returns with respect to gains in Fisher
information (or the reduction in runtime). The estimation
algorithm should then seek to balance these competing
factors in order to optimize the overall performance.

The introduction of error poses another issue for estima-
tion. Without error, the Fisher information gain per sample
in the enhanced sampling case with L = 1 is greater than
or equal to 9 for all II. As shown in Fig. 2, with the
introduction of even a small degree of error, the values of
IT where the likelihood function is flat incur a dramatic
drop in Fisher information. We refer to such regions as
estimation dead spots. This observation motivates the
concept of ELFs to increase their statistical power. By
promoting the P and R, operations to generalized reflec-
tions U(x) = exp(—ixP) and Ry(y) = exp(—iyRy), we can
choose rotation angles such that the information gain is

(13)

¥ T
10 4 == Standard
m== Enhanced S -

=== Engineered

®

Fisher information

ZA\
o |

-1.00 -0.75 -0.50 -0.25 000 025 050 0.75 1.00

Fisher information comparison

FIG. 2. These plots demonstrate improvement in information gain if the likelihood function is engineered. Dotted curves are the
noiseless case, and solid curves incorporate a 1% error per ansatz application [using the notation of Eq. (23), p = 0.99, p = 0.99? =
0.9801, and L = 1]. The likelihood function of enhanced sampling yields a large Fisher information for many values of IT relative to
that of standard sampling. The introduction of even a small degree of error in the quantum circuits causes the Fisher information to
become zero where the enhanced sampling likelihood function is flat (indicated by the gray bands). This can be verified by evaluating
Eq. (6) using the expression for the model of the noisy likelihood function in Eq. (23). By tuning the generalized reflection angles
[(x1,x2) = (—0.6847,0.6847)], we can engineer a likelihood function to boost the information gain in the estimation “dead spot” (gray

region).
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boosted around such dead spots. We find that, even for
deeper enhanced sampling circuits, engineering likelihood
functions allow us to mitigate the effect of estimation dead
spots.

III. ENGINEERED LIKELTHOOD FUNCTIONS

In this section, we propose the methodology of engineer-
ing likelihood functions for amplitude estimation. We first
introduce the quantum circuits for drawing samples that
correspond to engineered likelihood functions, and then
describe how to tune the circuit parameters and carry out
Bayesian inference with the resultant likelihood functions.

A. Quantum circuits for engineered likelihood
functions

Our objective is to design a procedure for estimating the
expectation value
[T = cos(8) = (4|P|A4), (14)
where |4) = A|0") in which 4 is an n-qubit unitary oper-
ator, P is an n-qubit Hermitian operator with eigenval-
ues *1, and 6 = arccos(IT) is introduced to facilitate
Bayesian inference later on. In constructing our estima-
tion algorithms, we assume that we are able to perform
the following primitive operations. First, we can prepare
the computational basis state |0”) and apply an ansatz
circuit 4 to it, obtaining |4) = 4|0"). Second, we can
implement the unitary operator U(x) = exp(—ixP) for any
angle x € R. Finally, we can perform the measurement
of P that is modeled as a projection-valued measure
{{+P)/2,I — P)/2} with respective outcome labels
{0, 1}. We also make use of the unitary operator V(y) =

e —iij_lP
A

ARy(»)AT, where Ry(y) = exp[—iy(2]0")(0"| —I)] and
y € R. Following the convention (see, e.g., Ref. [30]), we
call U(x) and V(y) the generalized reflections about the
+1 eigenspace of P and the state |A4), respectively, where
x and y are the angles of these generalized reflections,
respectively.

We use the ancilla-free [47] quantum circuit in Fig. 3
to generate the ELF, that is, the probability distribution
of the outcome d € {0, 1} given the unknown quantity 6
to be estimated. The circuit consists of a sequence of
generalized reflections. Specifically, after preparing the
ansatz state |4) = A4|0"), we apply 2L generalized reflec-
tions U(xy), V(x2),...,Ulxar—1), V(xy) to it, varying the
rotation angle x; in each operation. For convenience, we
call V(x;)U(xp—1) the jth layer of the circuit for j =
1,2,...,L. The output state of this circuit is

OX)|A) = V(xar)Uxaz—1) - - - Vxp) U(x1)14),  (15)

where X = (x1,X2,...,X0_1,X) € R* is the vector of
tunable parameters. Finally, we perform the projective
measurement {(/ + P)/2, (I — P)/2} on this state, receiv-
ing an outcome d € {0, 1}.

As in Grover’s search algorithm, the generalized
reflections U(xp;—1) and V(xy;) ensure that the quan-
tum state remains in the two-dimensional subspace S :=
span{|4), P|4)} [48] for any j. Let |4+) be the state
(unique, up to a phase) in S that is orthogonal to |4), i.e.,

_ Pl4) — (4| P |4) |4)
1 — (A|PA?

4%) (16)

To help the analysis, we view this two-dimensional sub-
space as a qubit, writing |4) and |41) as |0) and |1),

V(xy)
A

r N f

10%) I A

| 1 1 B
U(x2j—1)l AT IRo(xzj)I A N

Y
Repeat L times

FIG. 3. An illustration of the operations used for generating samples that correspond to an engineered likelihood function. Here 4
is the state preparation circuit, P is the observable of interest, and Ry (x;y;) is a generalized reflection about the state |0”). The blocks
represent unitary transformations, while the caps at the left and right indicate state preparation and measurement, respectively. The
outcomes of measurement of P yield information about the expectation value IT = (4|P|4). The case of L = 0 simply prepares |4) and
measures P. This corresponds to the standard sampling method used in the VQE. Even with an error-prone implementation, we can
enhance the information gain rate by applying a sequence of generalized reflections before the measurement. In such enhanced sam-
pling, the likelihood of outcomes depends more sensitively on IT. These circuit elements are color coded to highlight the commonalities
in the way the features P (blue), 4 (red), and |0”) (green) enter in the likelihood function.
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respectively. Let X, Y, Z, and I be the Pauli operators
and identity operator on this virtual qubit, respectively.
Then, focusing on the subspace S = span{|0), |1)}, we can
rewrite P as

P(6) = cos(9)Z + sin(9)X, (17)
and rewrite the generalized reflections U(x; 1) and V(xy;)
as

U(0;x35_1) = cos(xz;_1)]

— isin(xy;_1)[cos(0)Z + sin(@)X] (18)

and

V(xy) = cos(xy)] — isin(xy)Z, (19)
where x;;_1,x; € R are tunable parameters. Then the uni-
tary operator Q(x) implemented by the L-layer circuit
becomes
00;%) = Vi) UO;x20-1) - - - V() UO;x1). (20)
Note that in this picture, |4) = |0) is fixed, while P =
P(9), Ux) = U@®;x), and O(X) = Q(9;x) depend on the
unknown quantity 6. It turns out to be more convenient to
design and analyze the estimation algorithms in this “log-
ical” picture than in the original “physical” picture. There-
fore, we stick to this picture for the remainder of this paper.
The engineered likelihood function (i.e., the probability
distribution of measurement outcome d € {0, 1}) depends
on the output state p(6; X) of the circuit and the observable
P(0). Precisely, it is

L+ (=1)?A;%)
2 b

P(d|6;%) = 1)

where

A(0;%) = (0107 (0;$)P(0)0(0;%)|0) (22)
is the bias of the likelihood function [from now on, we use
P'(d|6;X) and A’(6;X) to denote the partial derivatives of
P(d|0;X) and A(9;X) with respect to 0, respectively]. In
particular, if X = (w/2,7/2,...,7/2,7/2) then we have
A(0;%) = cos[(2L + 1)0]. Namely, the bias of the likeli-
hood function for this X is the Chebyshev polynomial of
degree 2L + 1 (of the first kind) of IT. For this reason, we
call the likelihood function for this X the Chebyshev likeli-
hood function. In Sec. V we explore the performance gap
between CLFs and general ELFs.

In reality, quantum devices are subject to noise. To make
the estimation process robust against errors, we incorporate
the following exponential decay noise model into the like-
lihood function [25,49]. Recently, this exponential decay

noise model of the likelihood function has been used in
several related works [50,51] and validated in small-scale
experiments [52]. It has also been used in an 18-qubit
experiment on spectrum estimation [53]. Furthermore, it
is closely related to the noise analysis carried out in Ref.
[54]. Validation at large scales remains an important line
of research, which we emphasize in Sec. VII and leave to
future work. Letting p be the exponential decay factor, we
have

P(d|0:p,p.%) = %[1 +(=DBpIAEDL (23)
where p accounts for state preparation and measurement
error (cf. Appendix A) and A(8,X) is the bias of the ideal
likelihood function as defined in Eq. (22). From now on,
we use f = pp" as the fidelity of the whole process for
generating the ELF, and call p the layer fidelity. More-
over, for convenience, we write P(d|0;p,p,x) simply as
P(d|0;f ,X) [we also use P'(d|0;f ,X) to denote the partial
derivative of P(d|0;f ,x) with respect to 0]. Note that the
effect of noise on the ELF is that it rescales the bias by a
factor of /. This implies that the less errored the generation
process, the steeper the resultant ELF, as one would expect.
Before moving on to the discussion of Bayesian
inference with ELFs, it is worth mentioning the
following property of engineered likelihood functions,
as it will play a pivotal role in Sec. IV. In Ref. [55],
we introduced the concepts of trigono-multilinear and
trigono-multiquadratic functions. Basically, a multivari-
able function / : R¥ — C is trigono-multilinear if, for any

jef{l,2,...,k}, we can write f (x1,x,...,X;) as

S Ge,x, .., x0) = Cp (X)) cos(x;) + S (X)) sin(x;)

(24)

for some (complex-valued) functions C; and S; of X—; :=
(x1,...,%_1,X41,%), and we call C; and §; the cosine-
sine-decomposition (CSD) coefficient functions of f with
respect to x;. Similarly, a multivariable function f : RF —

C is trigono-multiquadratic if, forany j € {1,2,...,k}, we
can write f (x1,x2,...,X;) as
S Ge,x2, .., x0) = Cp (X)) cos(2x;) + S; (X)) sin(2x;)

+ B; (X)) (25)
for some (complex-valued) functions C;, S;, and B; of
Xoj = (X1,...,X_1,X41,X%), and we call C;, S;, and
B, the cosine-sine-bias-decomposition (CSBD) coefficient
functions of /* with respect to x;. The concepts of trigono-
multilinearity and trigono-multiquadraticity can be nat-
urally generalized to linear operators. Namely, a linear
operator is trigono-multilinear (or trigono-multiquadratic)
in a set of variables if each entry of this operator (written
in an arbitrary basis) is trigono-multilinear (or trigono-
multiquadratic) in the same variables. Now Egs. (18)—+20)
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imply that Q(6;X) is a trigono-multilinear operator of X.
Then it follows from Eq. (22) that A(#;X) is a trigono-
multiquadratic function of x. Furthermore, we show in
Sec. IV A that the CSBD coefficient functions of A(6;X)
with respect to any x; can be evaluated in O(L) time,
and this greatly facilitates the construction of the algo-
rithms in Sec. IV A for tuning the circuit parameters X =
(*1,X2, -+ X201, X2L)-

B. Bayesian inference with engineered likelihood

functions

With the model of (noisy) engineered likelihood func-
tions in place, we are now ready to describe our method-
ology for tuning the circuit parameters X and performing
Bayesian inference with the resultant likelihood functions
for amplitude estimation.

Let us begin with a high-level overview of our algorithm
for estimating I1 = cos(9) = (4|P|4). For convenience,
our algorithm mainly works with 8 = arccos(I) instead of
I1. We use a Gaussian distribution to represent our knowl-
edge of 6 and make this distribution gradually concentrate
around the true value of 6 as the inference process pro-
ceeds. We start with an initial distribution of IT (which
can be generated by standard sampling or domain knowl-
edge) and convert it to the initial distribution of 6. Then
we repeat the following procedure until a convergence
criterion is satisfied. At each round, we first find the cir-
cuit parameters X that maximize the information gain from
the measurement outcome d in a certain sense (based on
our current knowledge of 6). Then we run the quantum cir-
cuit in Fig. 3 with the optimized parameters X and receive
a measurement outcome d € {0, 1}. Finally, we update the
distribution of 6 by using Bayes’ rule, conditioned on the
received outcome d. Once this loop is finished, we convert
the final distribution of 8 to the final distribution of IT, and
set the mean of this distribution as the final estimate of IT.
See Fig. 4 for the conceptual diagram of this algorithm.

Next, we describe each component of the above
algorithm in more detail. Throughout the inference pro-
cess, we use a Gaussian distribution to keep track of our
belief of the value of 6. Namely, at each round, 6 has prior
distribution

p®) =pO:ip,0) = e @297 (26)

2no

for some prior mean u € R and prior variance 0% € R,
After receiving the measurement outcome d, we compute
the posterior distribution of 6 by using Bayes’ rule

Pd|6;f,X)p©®)

p@ld;f,x) = PS5

27

where the normalization factor, or model evidence, is
defined as P(d;f,X) = [P(d|0;f ,X)p(0)d6 (recall that

Get initial distribution of IT
I~ N(ﬂ07 &g)

(fi0,60)

Get initial distribution of 6
0~ N(uov US)

(/‘07 UO)
Choose circuit parameters | 7, | Run circuit and measure
Ty = A(pr—1,0k-1, f) (Qx) |4), P) — di € {0, 1}
TNO i
Update distribution of 6
(pre; o)
Converged? (ldy) = P (dy|0)p(6)
PUIG) = P (dy)
chs

Get final distribution of 6
0~ N(NK7 0'%()

(MK,UK)

Get final distribution of IT
I ~ N (fix, 6% )

FIG. 4. High-level flowchart of the algorithm for estimating
IT = cos(f) = (4|P|A4). Here f is the fidelity of the process for
generating the ELF. This algorithm mainly works with 6 instead
of I1, and there are conversions between the distributions of 0
and IT at the beginning and end of the algorithm. The final esti-
mate of IT is fix. Note that only the “Run circuit and measure”
step involves a quantum device.

f 1is the fidelity of the process for generating the ELF).
Although the true posterior distribution will not be a Gaus-
sian, we approximate it as such. Following the method-
ology in Ref. [56], we replace the true posterior with
a Gaussian distribution of the same mean and variance
[57], and set it as the prior of 6 for the next round.
We repeat this measurement-and-Bayesian-update proce-
dure until the distribution of 9 is sufficiently concentrated
around a single value.

Since the algorithm mainly works with 6 and we are
eventually interested in I1, we need to make conver-
sions between the estimators of # and I1. This is done
as follows. Suppose that at round % the prior distribu-
tion of 6 is N (uk,akz) and that the prior distribution of
IT is N (fix,67) (note that ik, oy, fix, and 65 are random
variables as they depend on the history of random measure-
ment outcomes up to round k). The estimators of 6 and IT at
this round are wy and iy, respectively. Given the distribu-
tion N (pux, o) of 6, we compute the mean /i, and variance
67 of cos(6), and set N (fix, 67) as the distribution of IT.
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This step can be done analytically, as if X ~ N (u,0?).
Then

E[cos(X)] = e 2 cos(u), (28)

(1 —e )1 — e cos(2u)]

Var[cos(X)] = 5

(29)

Conversely, given the distribution N (i, &kz) of II, we
compute the mean u; and variance crkz of arccos(IT) (clip-
ping T1 to [—1, 1]), and set NV (1, o) as the distribution
of 6. This step is done numerically. Even though the cos or
arccos function of a Gaussian variable is not truly Gaus-
sian, we approximate it as such and find that this has
negligible impact on the performance of the algorithm.

Our method for tuning the circuit parameters X is as fol-
lows. Ideally, we want to choose them carefully so that
the MSE of the estimator w; of 6 decreases as fast as
possible as k grows. In practice, however, it is hard to com-
pute this quantity directly, and we must resort to a proxy
of its value. The MSE of an estimator is a sum of the
variance of the estimator and the squared bias of the esti-
mator. We find that, for large enough £, the squared bias of
i is smaller than its variance, i.e., Bias(ux)? = (E[ux] —
0*)* < Var(uy), where 6* is the true value of 6. We also
find that, for large enough &, the variance o of 6 is often
close to the variance of uy, i.e., okz ~ Var(uy) with high
probability (see Appendix E for evidences of these claims).
Combining these facts, we know that, for large enough
k, MSE(ux) = E[(1x — 6*)%] < 207 with high probabil-
ity. So we find the parameters X that minimize the variance
o of 0 instead.

Specifically, suppose that 6 has prior distribution
N (i, 0%). Upon receiving the measurement outcome d €
{0, 1}, the expected posterior variance [55] of 6 is

2 . 2\12
_ 0_2 f [3Mb(,u,6,x)] > ,

1 —f2[b(n,0;%)]
(30)

Eu[Var(®|d; f ,%)] = o (1

where

b(u,0;X) = /oo p(6; u,0)A(0;X)do (3D

oo
in which A(0;X) is the bias of the ideal likelihood function
as defined in Eq. (22), and f is the fidelity of the process for
generating the likelihood function. We introduce an impor-
tant quantity for engineering likelihood functions that we
refer to as the variance reduction factor,

F20ub(p, 03 3)]?

V(u,0,f,x) = I a0 DE (32)
Then we have
Eq[Var@|d;f,%)] = o’[1 — o V(u,0:/,9)].  (33)

The larger V is, the faster the variance of 6 decreases on
average. Furthermore, to quantify the growth rate (per time
step) of the inverse variance of 6, we introduce the quantity

L 1 _ L
R(u, 031 ,%) == ) (Ed[var(md;f,fc')] 02)

_ 1 Vi, 0:f %)
T 1 —0V(u,0:f,%) G4

where 7(L) is the duration of the L-layer circuit in Fig. 3
(recall that X e IR?"). Note that R is a monotonic function of
VY for V € (0, 1). Therefore, when L is fixed, we can max-
imize R (with respect to X) by maximizing V. In addition,
when o is small, R is approximately proportional to V, i.e.,
R~ V/T(L). For the remainder of this work, we assume
that the ansatz circuit 4 and its inverse 4* contribute most
significantly to the duration of the overall circuit. So we
take T(L) to be proportional to the number of times 4 or
A" is invoked in the circuit, setting T(L) = 2L + 1, where
time is in units of 4’s duration.

So now we need to find the parameters X =
(x1,X2,...,xy;) € R*" that maximize the variance reduc-
tion factor V(u,o;f ,x) for given u € R, 0 € R, and
f €10, 1]. This optimization problem turns out to be dif-
ficult to solve in general. Fortunately, in practice, we may
assume that the prior variance o2 of 6 is small (e.g., at
most 0.01), and in this case, V (i, 0;f ,X) can be approxi-
mated by the Fisher information of the likelihood function
Pd|0;f ,X) at @ = u, as shown in Appendix F, i.e.,

V(u,o;f,%) ~I(u;f,X) wheno issmall, (35)
where
5 2
Z0:f,x) =Eqy [(%log?’(dle;fﬁv :|
2 rcn-2\12
_ SEIA(05x)] (36)

1—f2[AG:;0)

is the Fisher information of the two-outcome likelihood
function P(d|0;f,x) as defined in Eq. (23). Therefore,
rather than directly optimizing the variance reduction
factor V(u,o;f ,X), we optimize the Fisher information
Z(w;f ,x), which can be done efficiently by the algorithms
in Sec. IV A 1. Furthermore, when the fidelity /' of the pro-
cess for generating the ELF is low, we have Z(0;f,X) ~
f2[A'(0;%)]?. Tt follows that

V(u,o:f,%) ~ f2[A(n;X)]* when o and f are small.
(37)

So in this case, we can simply optimize |A’(u;X)|, which
is proportional to the slope of the likelihood function
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P(d|0;f ,X) at & = u, and this task can be accomplished
efficiently by the algorithms in Sec. [V A 2.

Finally, we make a prediction on how fast the MSE of
the estimator [i; of IT decreases as k grows, under the
assumption that the number L of circuit layers is fixed dur-
ing the inference process. Note that MSE(1;) = ©(1/k)
as k — oo in this case. Let 6* and IT* be the true val-
ues of 6 and I, respectively. Then, as k — oo, we have
wr — 0%, 0 — 0, i — IT*, and 6, — 0 with high prob-
ability. When this event happens, we obtain, for large
ka

1 1 -
—— — —3 X LS %) (38)
Ok+1 Ok
Consequently, by Eq. (29), we know that, for large £,
1 1 I(/’Lkafa-;ék)
o N (39)
Ojt1 i sin” ()

where ; & arccos(fi;). Since Bias(fiz)? < Var(fiz) ~
6} for large k, we predict that

1- 2

MSE(1;) &~ S 5
) ™ T rarccos )i ]

(40)
This means that the asymptotic growth rate (per time step)

of the inverse MSE of [i; should be roughly

Z[arccos(IT*); [, X]
QL+ D[1 — (IT")2]°

Ro(IT; f , %) o= (41

where X € R?" is chosen such that Z[arccos(IT*);f ,X]
is maximized. We compare this rate with the empirical
growth rate (per time step) of the inverse MSE of [i; in
Sec. V.

IV. EFFICIENT HEURISTIC ALGORITHMS FOR
CIRCUIT PARAMETER TUNING AND BAYESIAN
INFERENCE

In this section, we present heuristic algorithms for tun-
ing the parameters x of the circuit in Fig. 3 and describe
how to efficiently carry out Bayesian inference with the
resultant likelihood functions.

A. Efficient maximization of proxies of the variance
reduction factor

Our algorithms for tuning the circuit parameters X are
based on maximizing two proxies of the variance reduction
factor V—the Fisher information and slope of the likeli-
hood function P(d|0; f , X). All of these algorithms require
efficient procedures for evaluating the CSBD coefficient
functions of A(6;X) and A'(6;X) with respect to x; forj =

1,2,...,2L. Recall that we have shown in Sec. III A that
A(0;X) is trigono-multiquadratic in X. Namely, for any j €
{1,2,...,2L}, there exist functions C; (0;X;), S; (0;X—;),
and B; (0;X—;) of X 1= (x1,.. ..,Xx21) such
that

. 5~x:]'719xj+19 .

A(0;%) = C;(0;%—;) cos(2x;) + S; (6;X;) sin(2x;)
+ B; (0;%). (42)

It follows that

A'(0;X) = C;(0;X) cos(2x;) + S (05X ) sin(2x;)

is also trigono-multiquadratic in ¥, where C;(0;X—;) =
3 Cj(0;%), S;(0;3~) = 3pS; (0;%), B;(0;X~) = 9pB;
(0;X-,) are the partial derivatives of C; (0;X;), S; (0;X—;),
B; (6;X;) with respect to 6, respectively. It turns out that,
given 6 and X, each of C; (0;X—;), S; (6;X~), B; (0;%—),
Cj’.(Q;)_ch), Sj"(Q;)Lj), and B; (6;X-;) can be computed in
O(L) time.

Lemma 1. Given 0 andX—;, each of C; (0;X-;), S; (0;%—;),
B; (0;X-), C}(@;iﬁj), S;(@;)_c'ﬁj) and B;(Q;)Lj) can be
computed in O(L) time.

Proof. See Appendix B. |

1. Maximizing the Fisher information of the likelihood
Sfunction

We propose two algorithms for maximizing the Fisher
information of the likelihood function P(d|6;f ,X) at a
given point 8 = u (i.e., the prior mean of 0). Namely, our
goal is to find ¥ € R?" that maximizes

LA P

I(,U«;fa?_é) = m

(44)

The first algorithm is based on gradient ascent. Namely,
it starts with a random initial point, and keeps taking
steps proportional to the gradient of Z at the current point,
until a convergence criterion is satisfied. Specifically, let
x¥® be the parameter vector at iteration t. We update
it as

XD =304 sOVI (3,3 s (45)

where §: 77 — R* is the step size schedule [58].
This requires the calculation of the partial derivative of
Z(w;f ,X) with respect to each x;, which can be done as
follows. We first use the procedures in Lemma 1 to com-
pute G := G (s X), §j := S (s X), By := By (1: X)),
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G = GUE.§ =), B = st
A = A(u;X)

= Cj cos(2x;) + S sin(2x;) + B;,
A= A (u;X)

= Cj’ cos(2x;) + Sj’ sin(2x;) + B,

dA(u; %)
Xj = — Q.

(46)
(47)

0x;

= 2[-C; sin(2x;) + S; cos(2x;)],
;AN (u3X)
T By

:= 2[~C; sin(2x;) + S; cos(2x;)].

(48)

(49)

Knowing these quantities, we can compute the partial
derivative of Z(u; f ,X) with respect to x; as

L TGuf )
V= 8Xj
_ WAL A
- (1= /2492 -0

Repeat this procedure for j = 1,2,...,2L. Then we
obtain VZ(u;f,%) = (y1,¥2,...,¥2r). Bach iteration of
the algorithm takes O(L?) time. The number of iterations
in the algorithm depends on the initial point, the termina-
tion criterion, and the step size schedule §. See Algorithm
1 for more details.

The second algorithm is based on coordinate ascent.
Unlike gradient ascent, this algorithm does not require step
sizes, and allows each variable to change dramatically in a
single step. As a consequence, it may converge faster than
the previous algorithm. Specifically, this algorithm starts
with a random initial point, and successively maximizes
the objective function Z(u;f ,x) along coordinate direc-
tions, until a convergence criterion is satisfied. At the jth
step of each round, it solves the following single-variable
optimization problem for a coordinate x; :

S?[C; cos(22) + S; sin(2z) + B;]?
argmax

= 1 —f2[Cjcos(2z) + §; sin(2z) + B; > D
Here C; = Cj(u;X~), S; = Sj(;X~), Bj = B;j(u; X)),
C; = G (%), S; = S;(u; X)), B; = B (14;X~;) can be
computed in O(L) time by the procedures in Lemma 1.
This single-variable optimization problem can be tack-
led by standard gradient-based methods, and we set
x; to be its solution. Repeat this procedure for j =
1,2,...,2L. This algorithm produces a sequence X,
D x@ . such that T(u;f,x¥@) < Z(u;f,xV) <

I(u;f,x?) <.... Namely, the value of Z(u;f,x®)
increases monotonically as ¢ grows. Each round of the
algorithm takes O(L?) time. The number of rounds in the
algorithm depends on the initial point and the termination
criterion. See Algorithm 2 for more details.

We have used Algorithms 1 and 2 to find the parame-
ters X € R?! that maximize Z(0;f ,X) [59] for various 6 €
(0, ) (fixing /) and obtained Fig. 5. This figure indicates
that the Fisher information of the ELF is larger than that
of the CLF for the majority of 6 € (0, ). Consequently,
the estimation algorithm based on the ELF is more effi-
cient than that based on the CLF, as will be demonstrated
in Sec. V.

2. Maximizing the slope of the likelihood function

We also propose two algorithms for maximizing the
slope of the likelihood function P(d|0;f ,x) at a given
point & = p (i.e., the prior mean of ). Namely, our
goal is to find X € R?** that maximizes |P'(u;f,x)| =
f 1A’ (u;X)|/2. These algorithms are similar to Algorithms
1 and 2 for Fisher information maximization, in the sense
that they are also based on gradient ascent and coordi-
nate ascent, respectively. They are formally described in
Algorithms 3 and 4 in Appendix C, respectively. We have
used them to find the parameters Xy € R/ that maximize
|A’(0;X)| for various 6 € (0,7) and obtained Fig. 6. This
figure implies that the slope-based ELF is steeper than the
CLF for the majority of 6 € (0, ) and hence has more sta-
tistical power than the CLF (at least) in the low-fidelity
setting by Eq. (37).

B. Approximate Bayesian inference with engineered
likelihood functions

With the algorithms for tuning the circuit parameters
X in place, we now describe how to efficiently carry
out Bayesian inference with the resultant likelihood func-
tions. In principle, we can compute the posterior mean
and variance of 6 directly after receiving a measurement
outcome d. But this approach is time consuming, as it
involves numerical integration. By taking advantage of
certain properties of the engineered likelihood functions,
we can greatly accelerate this process.

Suppose that 6 has prior distribution A (u,0?), where
o K 1/L, and that the fidelity of the process for gen-
erating the ELF is /. We find that the parameters X =
(x1,X2,...,xy) that maximize Z(u;f ,X) [or |A'(u;X)|]
satisfy the following property: when 6 is close to u, i.e.,
6 e€[u—0(),u+ O(c)], we have

1 + (=) sin(r6 + b)
2

P61 ,%) ~ (57)
for some r,b € R. Namely, A(6;X) can be approximated
by a sinusoidal function in this region of 8. Figure 7
illustrates one such example.
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Algorithm 1: Gradient ascent for Fisher information maximization in the ancilla-free case

Input: The prior mean p of 6, the number L of circuit layers, the fidelity f of the process for generating the ELF, the
step size schedule ¢ : ZZ° — R*, the error tolerance € for termination.

Output: A set of parameters & = (x1,Za,...,221) € R?F that are a local maximum point of the function Z(y; f, Z).

Choose random initial point () = (.Ym) ( S ,a"éoL)) € (—m, 7%

t < 0;

while True do

for j <~ 1 to 2L do

Let #9) = (21,...,a{?,, e, ... al));
Compute C(t) =, ﬂ(i)) S(t) =S (u; ﬂ(f)) B(f) = B;(u; ﬂ(f)) CJ{(U C/ (11; f(f)) S;(t) S/ (11; ﬂ(f))
B/(f) = Bj(u; @ 7 )) by using the procedures in Lemma 1;

Compute A(p; @), A'(p; ) and their partial derivatives with respect to z; at & = Z*) as follows:

A = A(p; 2P = C](.f’) cos (2x;) + S;t) sin (2z;) + B](.f’), (52)
A® = A 2P) = C’_;(t) cos (2x;) + S_;(t) sin (2z;) + B;m, (53)
OA
X§t> = (,u, 7) |z =2 (—CJ@ sin (2z;) + SJ(»t) cos (2@-)) , (54)
X_'f” = Wb:fm =2 (—C]'w sin (2z;) + S_;(t) cos (2.1,])) ; (55)
J

Compute the partial derivative of Z(u; f, &) with respect to z; at & = Z as follows:

40 92 £,7)

2f2 [(1 — AAD))AO sz(t)X;_@(A,(t))Q}

i 8x]' ‘5:5(0 =

end

if |Z(u; f,200)
| break;

end

t—t+1;

end

—I(u; f, V)| < € then

Return 70+ = (z (1t+1>7 JUSH)’ ) mgthH))

L= A0

Set 2D = #O 4 §()VT(1; f, )|z gty » where VI(p; f, )|z = (1,287, A0

as the optimal parameters.

We can find the best fitting  and b by solving the least-
squares problem

#*,b*) = argmlnz | arcsin[A(0;X)] — 10 — b|%, (58)
rb o geo
where ® = {01,0,,...,6;} C [u — O(o), u + O(o)]. This

least-squares problem has the analytical solution

< Z* ) = A+Z = (ATA)_IATZ, (59)
where
0, 1 arcsin[A(0;;X)]
6, 1 arcsin[A (6,;X)]
A=\ .1, z= ) (60)
O 1 arcsin[ A (6;; X)]

In Fig. 7 we present an example of the true and fitted
likelihood functions.

Once we obtain the optimal » and b, we can approximate
the posterior mean and variance of 6 by those for

1 + (=1)¥f sin(#6 + b)
2

P(dl6;f) = ; (61)

which have analytical formulas. Specifically, suppose that
6 has prior distribution A (i, akz) at round k. Let d; be
the measurement outcome, and let (¢, by) be the best-
fitting parameters at this round. Then we approximate the
posterior mean and variance of 6 by

(—1)fe %%y cos(rppag + by)
1+ (—l)dkfe*’%"/g/2 sin(ryix + by) ’

Mir1 = i+ (62)

2 _ 2
k41 = O

X<1_

JRope MR eIt 4 (= D)% sin(rpu + bk)])

[1+ (= D)tfe 3% 2 sin(r g + bi) 1
(63)
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Algorithm 2: Coordinate ascent for Fisher information maximization in the ancilla-free case

Input: The prior mean p of 6, the number L of circuit layers, the fidelity f of the process for generating the ELF, the

error tolerance € for termination.
Output: A set of parameters ¥ = (21, z2,. . .

Z(ps f, 7).
Choose random initial point #(® = (xg()), J?éo), oL éOL))
t<+ 1;
while True do
for j < 1 to 2L do
Let #) = («f”,...,2{" a0, 2l )
Compute C@> = Cj(u; _’(t)) S = =5, (1; ~(t)) B(t)

J
B' ®) .
i
Solve the smgle varlable optimization problem

y2r) € (=, 7]

2L that are a local maximum point of the function

€ (—m, a5

= B;(u; &), € = Cj(w; &), 51" = 85 7)),

B' (14 *m) by using the procedures in Lemma 1;

f? ( ' cos (22) + S; "™ sin (22) + B/<t)>

arg max
z —f? ( " cos (2z)+S( ) sin (2z)+B(t))
by standard gradient-based methods and set x§t) to be its solution;
end
if [Z(; £,79) = Z(p; £,77 )| < € then
| break;
end
t+—t+1;
end
Return #® = (a:it), m< ), thL)) as the optimal parameters.
After that, we proceed to the next round, setting  assume that there is no state preparation and measurement

N (i, okz 1) as the prior distribution of 6 for that round.

Note that, as Fig. 7 illustrates, the difference between the
true and fitted likelihood functions can be large when 6 is
far from u, i.e., | — | > o. But, since the prior distribu-
tion p(0) = e~@=W*/2% /(\/275) decays exponentially
in |60 — u|, such 6 have little contribution to the computa-
tion of the posterior mean and variance of . So Egs. (62)
and (63) give highly accurate estimates of the posterior
mean and variance of 6, and their errors have negligible
impact on the performance of the whole algorithm.

V. SIMULATION RESULTS

In this section, we present the simulation results
of Bayesian inference with engineered likelihood func-
tions for amplitude estimation. These results demonstrate
the advantages of engineered likelihood functions over
unengineered ones, as well as the impacts of circuit depth
and fidelity on their performance.

A. Experimental details

In our experiments, we assume that the ansatz circuit
A and its inverse AT contribute most significantly to the
duration of the circuit (in Fig. 3 or 21) for generating the
likelihood function. So, when the number of circuit layers
is L, the time cost of an inference round is roughly 2L +
1, where time is in units of 4’s duration. Moreover, we

error, i.e., p = 1, in the experiments.

Suppose that we aim to estimate the expectation value
IT = cos(9) = (A|P|A). Let [i; be the estimator of IT at
time ¢. Note that fi, is a random variable, since it depends
on the history of random measurement outcomes up to
time 7. We measure the performance of a scheme by the
root-mean-squared error (RMSE) of [i,, which is given by

RMSE, := /MSE, = VE[(&, — I1)2].  (64)

We investigate how fast RMSE, decreases as ¢ grows for
various schemes, including the ancilla-based Chebyshev
likelihood function (AB CLF), ancilla-based engineered
likelihood function (AB ELF), ancilla-free Chebyshev
likelihood function (AF CLF), and ancilla-free engineered
likelihood function (AF ELF).

In general, the distribution of fi, is difficult to charac-
terize, and there is no analytical formula for RMSE;. To
estimate this quantity, we simulate the inference process
M tlmes and collect M samples 27, 22, ..., p of i,

where ,u, is the estimate of IT at time ¢ in the ith run for
i=1,2,...,M. Then we use the quantity

RMSE, := — 1)

Z( 7 @

(65)
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1(6; f, Xo)

FIG. 5. Comparison of the Fisher information of the ELF and
CLF for various 8 € (0,), when the number of circuit layers
is L = 6, the fidelity of each layer is p = 0.9, and there is no
state preparation and measurement error (i.e., p = 1). For the
ELF, X, is a global maximum point of Z(#;f ,x) for given # and
f =pp* =0.531441. For the CLF, Xy = (n/2,7/2,...,7/2)
is fixed. One can see that the Fisher information of the ELF is
larger than that of the CLF for the majority of & € (0, 7). Further-
more, the Fisher information of the CLF changes dramatically
for different 6 [in fact, it is exactly 0 when 6 = j /(2L + 1) for
j =0,1,...,2L 4 1], whereas the Fisher information of the ELF
is less sensitive to the value of 6.

to approximate the true RMSE,. In our experiments, we set
M = 300 and find that this leads to a low enough empirical
variance in the estimate to yield meaningful results.

In each experiment, we set the true value of Il and
choose a prior distribution of I, and run the algorithm

—— AFCLF,L = 6 AFELF,L =6

12+

10

| (6; Xo)|
> o

N

o
L

0.0 0.5 1.0 1.5 2.0 2.5 3.0
6

FIG. 6. Comparison of the values of |A’(8;X,)| for the slope-
based ELF and CLF for various 8 € (0, 7), when the number of
circuit layers is L = 6. For the ELF, Xy is a global maximum point
of |A'(8;X)| for given 6. For the CLF, Xy = (7/2,7/2,...,7/2)
is fixed. This figure implies that the slope-based ELF is steeper
than the CLF for the majority of 6 € (0, ). Furthermore, the
slope of the CLF changes dramatically for different 8 [in fact,
it is exactly O when 0 =jx/(2L+ 1) forj =0,1,...,2L + 1],
whereas the slope of the ELF is less sensitive to the value of 6.

0.9 1 — TruelLF

Fitted LF HES AR
038 S
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P(d
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0.2 1 \
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—6.5 0.‘0 0:5 1;0 1?5 2j0 2j5
0

FIG. 7. The true and fitted likelihood functions when L =
3,/ =0.8, and 6 has prior distribution N (0.82,0.0009). The
true likelihood function is generated by Algorithm 2. During
the sinusoidal fitting of this function, we set ® = {u —o,u —
0.80,...,u4+0.80,u+ 0} (i.e., © contains 11 uniformly dis-
tributed points in [u — o, u + o]) in Eq. (51). The fitted like-
lihood function is P(d|6) = [1 + (—1)?f sin(#6 + b)]/2, where
r = 6.24 and b = —4.65. Note that the true and fitted likelihood
functions are close for 6 € [0.67,0.97].

in Fig. 4 to test its performance for estimating this quan-
tity. The only quantum component of this algorithm, i.e.,
executing the circuit in Fig. 3 and measuring the outcome
d € {0, 1}, is simulated by an efficient classical procedure,
since the probability distribution of the outcome d is char-
acterized by Eq. (23) or (D3), depending on whether the
scheme is ancilla-free or ancilla-based. Namely, we syn-
thesize the outcome d by a classical pseudorandom number
generator [based on Eq. (23) or (D3)] instead of simulating
the noisy quantum circuit. This not only greatly acceler-
ates our simulation, but also makes our results applicable
to a wide range of scenarios (i.e., they are not specific to a
certain ansatz circuit 4 or observable P).

For engineering the likelihood function, we use
Algorithm 2 or 6 to optimize the circuit parameters X,
depending on whether the scheme is ancilla-free or ancilla
based. We find that Algorithms 1 and 2 generate the same
likelihood function (as they both find the optimal param-
eters within a reasonable number of trials), and the same
holds for Algorithms 5 and 6. So the simulation results
in Sec. V will not change if we have used Algorithms 1
and 5 instead, as the AF ELF and AB ELF will remain
intact. Meanwhile, we do not use Algorithm 3, 4, 7, or 8
in our experiments, because these algorithms are used to
maximize the slope of the AF or AB likelihood function,
which is a good proxy of the variance reduction factor V
only when the fidelity /* is close to zero [see Eqs. (37)
and (D5)]. In our experiments, f is mostly between 0.5
and 0.9, and in such a case, the slope is not a good proxy
of the variance reduction factor and we need to maxi-
mize the Fisher information by Algorithm 1, 2, 5, or 6
instead.
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Comparison of the performances of the AB CLF, AB ELF, AF CLF, and AF ELF when the expectation value IT has true value

—0.4 and prior distribution N (—0.43,0.0009), the number of circuit layers is L = 6, and the layer fidelity is p = 0.9. Note that the
ELF outperforms the CLF in both the ancilla-free and ancilla-based cases, and the ancilla-free schemes outperform the ancilla-based

ones.

Our estimation algorithm needs to tune the circuit
parameters at each round, and since it can have tens of
thousands of rounds, this component can be quite time
consuming. We use the following method to mitigate this
issue. Given the number L of circuit layers and the fidelity
f of the process for generating the ELF, we first construct
a “lookup table” that consists of the optimal parameters
X for all the IT in a discrete set S = {I1;,I1,,..., [y} C
[<1,1]. Then at any stage of the estimation algorithm,
we find the I1; € S that is closest to the current estimate
of I1, and use the optimal parameters for I1; to approxi-
mate the optimal parameters for I1. In our experiments, we
set & ={-1.0,—0.9995,-0.999,...,0.999,0.9995, 1.0}
(i.e., & contains 4001 uniformly distributed points in
[-1,1]) and find that this greatly accelerates the esti-
mation algorithm without deteriorating its performance
much.

For Bayesian update with an ELF, we use the method
in Sec. IVB or Appendix D2 to compute the posterior
mean and variance of 6, depending on whether the scheme

0.003 00

0 5000 10000 15000 20000 25000 30000 35000

Runtime

FIG. 9.

is ancilla-free or ancilla-based. In particular, during the
sinusoidal fitting of the ELF, we set ® = {u — o, u —
0.80,...,u+0.80,u+ o} (ie., ® contains 11 uniformly
distributed points in [x — o, u + o]) in Eq. (58) or (D41).
We find that this is sufficient for obtaining a high-quality
sinusoidal fit of the true likelihood function.

B. Comparing the performance of various schemes

To compare the performance of various quantum-
generated likelihood functions, including the AB CLF, AB
ELF, AF CLF, and AF ELF, we run Bayesian inference
with each of them, fixing the number of circuit layers L =
6 and layer fidelity p = 0.9 (note that this layer fidelity
corresponds to a 12-qubit experiment with a two-qubit
gate depth of 12 and a two-qubit gate fidelity of 99.92%,
which is almost within reach for today’s quantum devices).
In Figs. 812 we illustrate the performances of different
schemes with respect to various true values of I1. These
results suggest the following.

— ABCLF

AF CLF
—— ABELF
—— AFELF

175 000 4

150 000 4

125 000 +
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50 000 A

25 000 -
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T T
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Comparison of the performances of the AB CLF, AB ELF, AF CLF, and AF ELF when the expectation value IT has true

value 0.6 and prior distribution A/(0.64,0.0009), the number of circuit layers is L = 6, and the layer fidelity is p = 0.9. Note that the
AB ELF slightly outperforms the AB CLF, while the AF ELF outperforms the AF CLF to a larger extent.
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FIG. 10. Comparison of the performances of the AB CLF, AB ELF, AF CLF, and AF ELF when the expectation value IT has true
value 0.52 and prior distribution A/(0.49, 0.0009), the number of circuit layers is L = 6, and the layer fidelity is p = 0.9. Note that the
RMSE of the estimator of IT converges to 0 for all schemes except the AB CLF. The AF ELF achieves the best performance.

(@)

(b)

(©

In both the ancilla-based and ancilla-free cases, the
ELF performs better than (or as well as) the CLF.
This means that by tuning the generalized reflection
angles, we do enhance the rate of information gain
and make the estimation of IT more efficient.

The AF ELF always performs better than the AB
ELF, whereas the AF CLF may perform better or
worse than the AB CLF, depending on the true value
of I1, but on average, the AF CLF outperforms the
AB CLF. So overall the ancilla-free schemes are
superior to the ancilla-based ones.

While RMSE; — 0 as t — oo for the AB ELF and
AF ELF, the same is not always true for the AB CLF
and AF CLF. In fact, the performances of the AB
CLF and AF CLF depend heavily on the true value
of I1, while the performances of the AB ELF and
AF ELF are not much affected by this value.

We may compare the above results with those of Fig. 13
in which we illustrate the R factors [as defined in Eq. (41)]
of the AB CLF, AB ELF, AF CLF, and AF ELF in the

RMSE

0.004 00

—— ABCLF
AF CLF

same setting. One can observe the following from this

figure.

(@)

(b)

(©

100000 4

The R, factor of the AB ELF is equal to or larger
than that of the AB CLF, and the same is true for the
AF ELF versus the AB CLF. This explains why the
ELF outperforms the CLF in both the ancilla-based
and ancilla-free cases.

The R, factor of the AF ELF is larger than that of the
AB ELF. Meanwhile, the IAQO factor of the AF CLF
can be larger or smaller than that of the AB CLF,
depending on the value of II, but on average the
AF CLF has larger R, factor than the AB CLF. This
explains the superiority of the ancilla-free schemes
over the ancilla-based ones.

The f?o factors of the AB ELF and AF ELF are
bounded away from 0 for all IT € [—1, 1] [60]. This
explains why their performances are stable regard-
less of the true value of I1. On the other hand, the
f?o factors of the AB CLF and AF CLF change
dramatically for different IT. In fact, the iio factor

—— ABCLF
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—— AFELF
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Comparison of the performances of the AB CLF, AB ELF, AF CLF, and AF ELF when the expectation value IT has true

value —0.1 and prior distribution A/ (—0.14,0.0009), the number of circuit layers is L = 6, and the layer fidelity is p = 0.9. Note that
the RMSE of the estimator of IT converges to 0 for all schemes except the AF CLF. The AF ELF achieves the best performance.
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FIG. 12. Comparison of the performances of the AB CLF, AB ELF, AF CLF, and AF ELF when the expectation value IT has true
value 0.9 and prior distribution N (0.92, 0.0009), the number of circuit layers is L = 6, and the layer fidelity is p = 0.9. Note that the
RMSE of the estimator of I fails to converge to 0 for the AF CLF and decreases slowly for the AB CLF. Both the AB CLF and AF
CLF are outperformed by the AB ELF and AF ELF, with the AF ELF achieving the best performance.

of the AB CLF is 0 when IT = cos(j /L) forj =
0,1,...,L, and the R, factor of the AF CLF is 0
when IT = cos[j 7 /(2L + 1)] forj =0,1,...,2L +
1. This means that if the true value of IT is close
to one of these “dead spots” then its estimator will
struggle to improve and hence the performance of
the AB or AF CLF will suffer (see Figs. 10—12 for
examples.). The AB ELF and AF ELF, on the other
hand, do not have this weakness.

C. Understanding the performance of Bayesian
inference with ELFs

Having established the improved performance of ELFs
over CLFs, we now analyze the performance of Bayesian
inference with ELFs in more detail. Note that Figs. 812
suggest that the inverse MSEs of both AB-ELF-based and
AF-ELF-based estimators of I1 grow linearly in time when
the circuit depth is fixed. By fitting a linear model to the
data, we obtain the empirical growth rates of these quan-
tities, which are shown in Tables II and III, respectively.
We also compare these rates with the Ry factors of the AB
ELF and AF ELF in the same setting. It turns out that the

TABLE II. The predicted and empirical growth rates of the
inverse MSEs of AB-ELF-based estimators of IT in the five
experiments in Sec. V B. In all of these experiments, the number
of circuit layers is L = 6 and the layer fidelity is p = 0.9.

Ry factor is a rough estimate of the true growth rate of the
inverse MSE of an ELF-based estimator of I, but it can
be unreliable sometimes. We leave it as an open question
to give a more precise characterization of the decay of the
RMSEs of ELF-based estimators of I1 during the inference
process.

1. Analyzing the impact of layer fidelity on the
performance of estimation

To investigate the influence of layer fidelity on the
performance of estimation, we run Bayesian inference
with an AB or AF ELF for fixed circuit depth but vary
layer fidelity. Specifically, we set the number L of cir-
cuit layers to be 6, and vary the layer fidelity as p =
0.75,0.8,0.85,0.9,0.95. In Figs. 14 and 15 we illustrate
the simulation results in the ancilla-based and ancilla-free
cases, respectively. As expected, higher layer fidelity leads
to better performance of the algorithm. Namely, the less
noisy the circuit, the faster the RMSE of the estimator of
IT decreases. This is consistent with the fact that the i(o
factors of the AB ELF and AF ELF are monotonically
increasing functions of f = p’, as demonstrated in Fig. 16.

TABLE III. The predicted and empirical growth rates of the
inverse MSEs of AF-ELF-based estimators of Il in the five
experiments in Sec. V B. In all of these experiments, the number
of circuit layers is L = 6 and the layer fidelity is p = 0.9.

Predicated Empirical Predicated Empirical
True value  Prior distribution ~ growth rate  growth rate True value  Prior distribution ~ growth rate  growth rate
of I of T of MSE;'  of MSE;" of T of T of MSE;!  of MSE;!
—-0.4 N(=0.43,0.0009) 0.71 0.75 —0.4 N (—0.43,0.0009) 3.77 3.70
0.6 N (0.64,0.0009) 0.91 0.86 0.6 N (0.64,0.0009) 4.73 4.68
0.52 N(0.49,0.0009) 0.70 0.75 0.52 N(0.49,0.0009) 4.36 4.19
—0.1 N (—=0.14,0.0009) 0.60 0.68 —0.1 N (=0.14,0.0009) 3.07 3.08
0.9 N(0.92,0.0009) 2.03 1.84 0.9 N (0.92,0.0009) 13.22 14.74
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FIG. 13. Comparison of the f?o factors of the AB CLF, AB
ELF, AF CLF, and AF ELF for IT € [—0.9, 0.9] when the num-
ber of circuit layers is L = 6 and the layer fidelity is p = 0.9.
Here X € R is a global maximum point of Ry(IT;/f,%) for
given IT and f = p’ = 0.531441. All four curves are plotted on
a fine grid with interval length 0.0005 (i.e., there are 3601 equally
spaced grid points in [—0.9, 0.9]). Note that the R, factors of the
AB CLF and AF CLF change dramatically for different IT. In
fact, they can be close to 0 for certain Il. By contrast, the Ry
factors of the AB ELF and AF ELF are bounded away from 0
for all IT.

2. Analyzing the impact of circuit depth on the
performance of estimation

To investigate the influence of circuit depth on the
performance of estimation, we run Bayesian inference with
an AB or AF ELF for fixed layer fidelity but vary circuit
depth. Specifically, we set the layer fidelity p to be 0.9, and
vary the number L of circuit layers from 1 to 5. In Figs. 17
and 18 we illustrate the simulation results in the ancilla-
based and ancilla-free cases, respectively. These results
indicate that a larger L (i.e., deeper circuit) does not neces-
sarily lead to better performance. The optimal choice of L
is indeed a subtle issue. This can be intuitively understood
as follows. As L increases, the likelihood function becomes

0.02 \
w
£ 0.01 -
& 0.009 00
0.008 00
0.007:00 ABELF,L=6,p=0.75
p— L —6,p=0.
0.006 00 ABELF, L =6, p=0.80
0.005 00 {— ABELF,L=6,p=085
—— ABELF,L=6,p=090
0.004 00 {—— ABELF,L=6,p=095

0 5000 10000 15000 20000 25000 30000 35000
Runtime

steeper [61] and hence gains more statistical power, if the
circuit for generating it is noiseless. But, on the other hand,
the true fidelity of the circuit decreases exponentially in L
and the implementation cost of this circuit grows linearly
in L. So one must find a perfect balance among these fac-
tors in order to maximize the performance of the estimation
algorithm.

The above results are consistent with those of Fig. 19 in
which we illustrate the f?o factors of the AB ELF and AF
ELF in the same setting. Note that a larger L does not nec-
essarily lead to a larger Ry factor of the AB or AF ELF.
One can evaluate this factor for different L and choose
the one that maximizes this factor. This often enables us
to find a satisfactory (albeit not necessarily optimal) L. It
remains an open question to devise an efficient strategy for
determining the L that optimizes the performance of esti-
mation given the layer fidelity p and a prior distribution
of IT.

VI. AMODEL FOR NOISY ALGORITHM
PERFORMANCE

Our aim is to build a model for the runtime needed
to achieve a target mean squared error in the estimate of
IT as it is scaled to larger systems and run on devices
with better gate fidelities. This model will be built on
two main assumptions. The first is that the growth rate of
the inverse mean squared error is well described by half
the inverse variance rate expression [cf. Eq. (34)]. The
variance contribution to the MSE is the variance in the
estimator, which is not necessarily the same as the pos-
terior variance. In Appendix E we show that the variance
closely tracks the variance of the estimator (cf. Fig. 26).
We use the posterior variance ori2+1 in place of the estima-
tor variance. The half is due to the conservative estimate
that the variance and squared bias contribute equally to
the mean squared error. In Appendix E we show evidence
supporting this assumption of a small bias (cf. Fig. 25).
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60000 - ABELF,L=6,p=0.80
—— ABELF,L=6,p=085
50000 4 — ABELF.L=6,p=090
—— ABELF,L=6,p=095
40000 A
T
%
2 30000 4
20000 A
10000 1
0_

10000 15000 20000 25000 30000 35000
Runtime

0 5000

FIG. 14. The impact of layer fidelity on the performance of the AB ELF. Here IT has true value 0.18 and prior distribution
N(0.205,0.0009), the number L of circuit layers is 6, and the layer fidelity p is varied as p = 0.75,0.8,0.85,0.9,0.95. Note that

higher layer fidelity leads to better performance of estimation.
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FIG. 15.

—— AFELF,L=6,p=075
AFELF,L =6, p=0.80
200000  — AFELF,L=6,p=085
—— AFELF,L=6,p=0.90
—— AFELF,L=6,p=095
150 000 A
0
w
%))
= 100 000 1
50 000 +
04

0 5000 10000 15000 20000 25000 30000 35000
Runtime

The impact of layer fidelity on the performance of the AF ELF. Here IT has true value 0.18 and prior distribution

N(0.205,0.0009), the number L of circuit layers is 6, and the layer fidelity p is varied as p = 0.75,0.8,0.85,0.9,0.95. Note that

higher layer fidelity leads to better performance of estimation.

The second assumption is an empirical lower bound on the
variance reduction factor, which is motivated by numerical
investigations of the Chebyshev likelihood function.

We carry out analysis for the MSE with respect to the
estimate of 6. We then convert the MSE of this estimate
to an estimate of MSE with respect to I1. Our strategy
will be to integrate upper and lower bounds for the rate
expression R(u,o0;f ,m) in Eq. (34) to arrive at bounds
for the inverse MSE as a function of time. To help our
analysis, we make the substitutionm = T(L) = 2L + 1 and
reparameterize the way noise is incorporated by introducing
A and o such that 2 = p?p?t = e +HD—a = g=dm—a

The upper and lower bounds on this rate expression
are based on findings for the Chebyshev likelihood func-
tions, where ¥ = (7/2)®* = (7/2,7/2,...,7/2) € R*.
Since the Chebyshev likelihood functions are a subset of
the engineered likelihood functions, a lower bound on
the Chebyshev performance gives a lower bound on the
ELF performance. We leave as a conjecture that the upper

—— ABELF,L=6,p=075
ABELF,L=6,p=0.80
—— ABELF,L=6,p=085

—— ABELFL=6,p=090
—— ABELFL=6,p=095

Ro(T; f, Xn)

| N

T T T T
-08 -0.6 -04 -0.2 0.0 0.2 0.4 0.6 0.8

bound for this rate in the case of the ELF is a small multi-
ple (e.g., 1.5) of the upper bound we have established for
the Chebyshev rate.

The Chebyshev upper bound is established as follows.
For fixed o, A, and m, one can show [62] that the vari-
ance reduction factor achieves a maximum value of V =
m?* exp(—m?0> — Am — «), occurring at p = /2. This

. . 252 . .
expression is less than m?e™"°", which achieves a max-
imum of (eoc?)™! at m = 1/o. Thus, the factor 1/(1 —
o?V) cannot exceed 1/(1 —e™') &~ 1.582. Putting this
all together, for fixed o, A, and m, the maximum rate
is upper bounded as R(u,0; A, 0, m) < emexp(—m*c? —
Am —a)/(e —1). This follows from the fact that R is
monotonic in ) and that V) is maximized at © = 7 /2. In
practice, we aim to choose a value of L that maximizes
the inverse variance rate. The rate achieved by discrete L
cannot exceed the value we obtain when optimizing the
above upper bound over continuous values of m. This opti-
mal value is realized for 1/m = %(«/Az + 802+ 1). We

—— AFELF,L=6,p=075
AFELF,L=6,p=080
—— AFELFL=6,p=085

—— AFELFL=6,p=090

25 1 —— AFELF,L=6,p=0.95
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FIG. 16. The Ry factors of the AB ELF and AF ELF for IT € [—0.9, 0.9] when the number L of circuit layers is fixed to 6 and the
layer fidelity p is varied as p = 0.75,0.8,0.85,0.9,0.95. Here ¥ € R?" is a global maximum point of IAQO(H;f,?c) for given IT and
/ = p*. Note that higher layer fidelity leads to larger R, factors of the AB ELF and AF ELF.
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FIG. 17.
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The impact of circuit depth on the performance of the AB ELF. Here IT has true value 0.35 and prior distribution

N(0.39,0.0016), the layer fidelity p is 0.9, and the number L of layers is varied from 1 to 5. Note that the best performance is

achieved by L = 4 instead of L = 5.

define R(o; A, ) by evaluating R(7x/2,0; A, o, m) at this
optimum value,

_ 2670171
b = s 1o
( 20" )
X exp >
402 + A2 4+ A2\ /8c2 /02 + 1

(66)

which gives the upper bound on the Chebyshev rate

*C(Maa;)"aa) = mEXR(MaU;)‘"aam) = LIR(U’)H(X)
e_

(67)

We do not have an analytic lower bound on the Cheby-
shev likelihood performance. We can establish an empir-
ical lower bound based on numerical checks. For any
fixed L, the inverse variance rate is zero at the 2L + 2
points pu € {0,7/Q2L+ 1),2x/2L+1),...,2Lx /(2L +

0.04 ——AFELF,L=1,p=09

AFELF,L=2,p=09
—AFELF,L=3,p=09
——AFELF, L=4,p=09
0.02 ——AFELF,L=5,p=09
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0.002 00

0 5000 10000 15000 20000 25000 30000 35000
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FIG. 18.

1), w}. Since the rate is zero at these end points for all L,
the global lower bound on R{. is zero. However, we are
not concerned with the poor performance of the inverse
variance rate near these end points. When we convert the
estimator from 6 to I1 = cos 6, the information gain near
these end points actually tends to a large value. For the
purpose of establishing useful bounds, we restrict u to
be in the range [0.17,0.97]. In the numerical tests [63]
we find that, for all u € [0.17,0.97], there is always a
choice of L for which the inverse variance rate is above
(e — 1)?/e* ~ 0.40 times the upper bound. Putting these
together, we have

—1.- _
e—R(G;/\,a) < Ri(p, 05, ) < LIR(G;A,&).
e e —
(68)

It is important to note that, by letting m be continuous, cer-
tain values of o and A can lead to an optimal m for which
L = (m — 1)/2 is negative. Therefore, these results apply
only in the case that A < 1, which ensures that m > 1. We

200 000 { — AFELF,L=1,p=09
AFELF,L=2,p=09

175 000 4 — AFELF,L=3,p=09
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The impact of circuit depth on the performance of the AF ELF. Here IT has true value 0.35 and prior distribution

N(0.39,0.0016), the layer fidelity p is 0.9, and the number L of layers is varied from 1 to 5. Note that the best performance is

achieved by L = 4 instead of L = 5.
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FIG. 19. The R, factors of the AB ELF and AF ELF for I € [—0.9,0.9] when the number L of circuit layers is varied from 1 to 5
and the layer fidelity p is fixed to 0.9. Here X € R?" is a global maximum point of Ry(TT; f ,¥) for given IT and f = p*. Note that the
L that maximizes the R, factor depends heavily on the value of IT in both the ancilla-based and ancilla-free cases.

expect this model to break down in the large-noise regime
(ie., A >1).

For now, we assume that the rate tracks the geomet-
ric mean of these two bounds, i.e., Rj.(0, A, 1) = R(o, 1),
keeping in mind that the upper and lower bounds are
small constant factors off of this. We assume that the
inverse variance grows continuously in time at a rate
given by the difference quotient expression captured by
the inverse-variance rate, R* = (d/dt)(1/0?). Letting F =
1/0? denote this inverse variance, the rate equation above
can be recast as a differential equation for F,

dF Qe 1

dt T a1+ 8/(FaD)
2
x exp (
4+ 12F + \2F 1+ 8/ (F12)

Through this expression, we can identify both the Heisen-
berg limit behavior and shot-noise limit behavior. For F' <«
1/A2, the differential equation becomes

). (69)

dF e\
a2

which integrates to a quadratic growth of the inverse
squared error F'(f) ~ #*. This is the signature of the Heisen-
berg limit regime. For F > 1/A%, the rate approaches a
constant,

JF, (70)

—a—1
ar _e" 71)
dt A
This regime yields a linear growth in the inverse squared
error F'(f) ~ t, indicative of the shot-noise limit regime.
In order to make the integral tractable, we can replace
the rate expression with integrable upper and lower bound

expressions (to be used in tandem with our previous
bounds). Letting x = A?F, these bounds are reexpressed as

QeI - dx
14+1/V/12x + (x +4)/(V/x2 +8x) — dt
e 1)

> .72
1+ 1/8/4x + (x +4)/(+v/x2 + 8x)

From the upper bound we can establish a lower bound
on the runtime, by treating time as a function of x and
integrating,

’ 5o et I X+ 4
dt > dx 1+ +
/o X0 2 ( 12x  /x% + 8 )
evtl x5
=5 Wy 3 gV 8y

1
- \/’;E - E,/xg + 8x). (73)

Similarly, we can use the lower bound to establish an upper
bound on the runtime. Here we introduce our assumption
that, in the worst case, the MSE of the phase estimate &
is twice the variance (i.e., the variance equals the squared
bias), so the variance must reach half the MSE: o2 =
85 /2 = A?/x. In the best case, we assume that the bias in
the estimate is zero and set &3 = A% /x. We combine these
bounds with the upper and lower bounds of Eq. (68) to
arrive at the bounds on the estimation runtime as a function
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of target MSE,
2
e | a 1 A2 (2v2
- |5+——+ <—>+ —
20% | &f ey & €
Sty
2
e et 1 A\ 2«/5
= |3t —7=* | t|— )
e—1p% e V2g &5 &g

(74)

where 6 € [0.17,0.97].

At this point, we can convert our phase estimate 6 back
into the amplitude estimate I1. The MSE with respect to
the amplitude estimate €2 can be approximated in terms of
the phase estimate MSE as

e% = E(I1 — IT)°
= E(cosé — cos6)?
dcos@)2

%E((é—e) =

2 gi2
= g;sin” 0,

(75)
where we have assumed that the distribution of the esti-
mator is sufficiently peaked about 6 to ignore higher-order
terms. This leads to &2 = 2 /(1 — I12), which can be sub-
stituted into the above expressions for the bounds, which
hold for IT € [c0s 0.97,c0s0.1] &~ [—0.95,0.95]. Drop-
ping the estimator subscripts (as they only contribute con-
stant factors), we can establish the runtime scaling in the
low-noise and high-noise limits,

_JOE /o), A Le,

o r/e?r), x> e, (76)

&

observing that the Heisenberg-limit scaling and shot-noise
limit scaling are each recovered.

We arrived at these bounds using properties of Cheby-
shev likelihood functions. As we have shown in the previ-
ous section, by engineering likelihood functions, in many
cases we can reduce estimation runtimes. Motivated by
our numerical findings of the variance reduction factors
of engineered likelihood functions (see, e.g., Fig. 13),
we conjecture that using engineered likelihood functions
increases the worst-case inverse-variance rate in Eq. (68)
to R(o; A, ) < RE(p, 050, a).

In order to give more meaning to this model, we refine
it to be in terms of the number of qubits » and two-qubit
gate fidelities f,o. We consider the task of estimating the
expectation value of a Pauli string P with respect to state

Runtime to target accuracy

— 5
e =1x10 1h

1s

Runtime (s)

£=0.001

10-3 1ms

1-107%  1-10™° 1-107% 1-1071! 1-107%2
Two-qubit gate fidelity

1-107°  1-107%  1-1077

FIG. 20. As two-qubit gate fidelities are improved, deeper
enhanced sampling circuits warrant being implemented, yield-
ing shorter estimation runtimes. Here, we consider the case of
n = 100 qubits, D = 200 two-qubit gate depth per layer, and tar-
get accuracies of ¢ = 1073, ¢ = 107%, and ¢ = 107>. The bands
indicate the upper and lower bounds of Eq. (74).

|4). Assume that IT = (4|P|A) is very near zero so that
g2 = e, ~ ¢]. Let the two-qubit gate depth of each of

the L layers be D. We model the total layer fidelity as
p= fZ’éD/ ? where we have ignored errors due to single-
qubit gates. From this, we have A = %nD In(1/f50) and
a=2In(1/p) — %nD In(1/f20). Putting these together and
using the lower bound expression in Eq. (74), we arrive at
the runtime expression

nD/2
t _efzg/ nDIn(l/frp) 1
T 2p2 2¢2 Ve

<nDln(l/f2Q)>2+ (2&)2
&

2¢2

(77

Finally, we put some meaningful numbers in this expres-
sion and estimate the required runtime in seconds as a
function of two-qubit gate fidelities. To achieve quan-
tum advantage, we expect that the problem instance will
require of the order of n = 100 logical qubits and that
the two-qubit gate depth is of the order of the number
of qubits, D = 200. Furthermore, we expect that target
accuracies ¢ will need to be of the order of & = 1073
to 107>, The runtime model measures time in terms of
ansatz circuit durations. To convert this into seconds, we
assume that each layer of the two-qubit gates will take time
G = 1073 s, which is an optimistic assumption for today’s
superconducting qubit hardware. In Fig. 20 we show this
estimated runtime as a function of the two-qubit gate
fidelity.
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The two-qubit gate fidelities required to reduce run-
times into a practical region will most likely require error
correction. Performing quantum error correction requires
an overhead that increases these runtimes. In designing
quantum error-correction protocols, it is essential that the
improvement in gate fidelities is not outweighed by the
increase in estimation runtime. The proposed model gives
a means of quantifying this trade-off: the product of gate
infidelity and (error-corrected) gate time should decrease
as useful error correction is incorporated. In practice, there
are many subtleties that should be accounted for to make
a more rigorous statement. These include considering the
variation in gate fidelities among gates in the circuit and the
varying time costs of different types of gates. Nevertheless,
the cost analyses afforded by this simple model may be a
useful tool in the design of quantum gates, quantum chips,
error-correcting schemes, and noise mitigation schemes.

VII. OUTLOOK

This work is motivated by the impractical runtimes
required by many near-term quantum algorithms. We aim
to improve the performance of estimation subroutines that
have relied on standard sampling, as used in the VQE.
Drawing on the recent alpha-VQE [20] and quantum
metrology [41], we investigate the technique of enhanced
sampling to explore the continuum between standard sam-
pling and quantum amplitude (or phase) estimation. In
this continuum, we can make optimal use of the quan-
tum coherence available on a given device to speed up
estimation. Similar to standard sampling in the VQE,
enhanced sampling does not require ancilla qubits. Quan-
tum advantage for tasks relying on estimation will likely
occur within this continuum rather than at one of the
extremes.

Our central object of study is the quantum-generated
likelihood function, relating measurement outcome data
to a parameter of interest encoded in a quantum circuit.
We explore engineering likelihood functions to optimize
their statistical power. This leads to several insights for
improving estimation. First, we should incorporate a well-
calibrated noise model directly in the likelihood function to
make inference robust to certain error. Second, we should
choose a circuit depth (reflected in the number of enhanced
sampling circuit layers) that balances gain in statistical
power with accrual of error. Finally, we should tune gen-
eralized reflection angles to mitigate the effect of “dead
spots” during the inference process.

We use engineered likelihood functions to carry out
adaptive approximate Bayesian inference for parameter
estimation. Carrying out this process in simulation requires
us to build mathematical and algorithmic infrastructures.
We develop mathematical tools for analyzing a class of
quantum-generated likelihood functions. From this analy-
sis, we propose several optimization algorithms for tuning

circuit parameters to engineer likelihood functions. We
investigate the performance of estimation using engineered
likelihood functions and compare this to estimation using
fixed likelihood functions. Finally, we propose a model
for predicting the performance of enhanced sampling esti-
mation algorithms as the quality of quantum devices is
improved.

These simulations and the model lead to several insights.
As highlighted in Sec. V B, for the degree of device error
expected in the near term (two-qubit gate fidelities of
approximately 99.92%), we show that enhanced sampling
and engineered likelihood functions can be used to out-
perform standard sampling used in the VQE. Furthermore,
these simulations suggest a nonstandard perspective on the
tolerance of error in quantum algorithm implementations.
We find that, for fixed gate fidelities, the best performance
is achieved when we push circuit depths to a point where
circuit fidelities are around the range of 0.5-0.7. This
suggests that, compared to the logical circuit fidelities sug-
gested in other works (e.g., 0.99 in Ref. [16]), we can afford
a 50-fold increase in circuit depth. We arrive at this balance
between fidelity and statistical power by taking estimation
runtime to be the cost to minimize.

The runtime model developed in Sec. VI sheds light on
the trade-off between gate times and gate fidelity for esti-
mation. For gate times that are one-thousand times slower,
the gate fidelities must have three more nines to achieve the
same estimation runtimes. The runtime model gives insight
on the role of quantum error correction in estimation algo-
rithms. Roughly, we find that, for quantum error correction
to be useful for estimation, the factor of increase in run-
time from error-correction overhead must be less than the
factor of decrease in logical gate error rates. Additionally,
the runtime model predicts that, for a given estimation
task, there is a level of logical gate fidelity beyond which
further improvements effectively do not reduce runtimes
(especially if time overhead is taken into account). For the
100-qubit example considered, seven nines in two-qubit
gate fidelities sufficed.

We leave a number of questions for future investi-
gation. In the VQE a set of techniques referred to as
“grouping” are used to reduce the measurement count
[46,64—67]. These grouping techniques allow sampling of
multiple operators at once, providing a type of measure-
ment parallelization. The grouping method introduced in
Refs. [65,67] decomposes a Pauli Hamiltonian into sets
of mutually anticommuting Pauli strings, which ensures
that the sum within each set is a Hermitian reflection.
This method of grouping is compatible with enhanced
sampling, as the Hermitian reflections can be both mea-
sured and implemented as generalized reflections (i.e., an
example of operator P). However, it remains to explore
if the additional circuit depth incurred by implementing
these reflections is worth the variance reduction in the
resulting estimators. Beyond existing grouping techniques,
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we anticipate opportunities for parallelizing measurements
that are dedicated to enhanced sampling.

Our work emphasizes the importance of developing
accurate error models at the algorithmic level. Efficiently
learning the “nuisance parameters” of these models, or
likelihood function calibration, will be an essential ingre-
dient to realizing the performance gain of any enhanced
sampling methods in the near term. The motivation is
similar to that of randomized benchmarking [68], where
measurement data are fit to models of gate noise. An
important problem that we leave for future work is to
improve methods for likelihood function calibration. Mis-
calibration can introduce a systematic bias in parameter
estimates. A back-of-the-envelope calculation predicts that
the relative error in estimation due to miscalibration bias is
inversely proportional to the number of Grover iterates L
(which is set proportionally to 1) and proportional to the
absolute error in the likelihood function. Assuming that
this absolute error grows sublinearly in L, we would expect
a degree of robustness in the estimation procedure as L is
increased. In future work we will explore in more detail to
what precision we must calibrate the likelihood function so
that the bias introduced by miscalibration (or model error)
is negligible. Finally, we leave investigations into analyti-
cal upper and lower bounds on estimation performance to
future work.

We have aimed to present a viable solution to the “mea-
surement problem” [15] that plagues the VQE. It is likely
that these methods will be needed to achieve quantum
advantage for problems in quantum chemistry and mate-
rials. Furthermore, such amplitude estimation techniques
may help to achieve quantum advantage for applications
in finance and machine learning tasks as well. We hope
that our model for estimation performance as a function
of device metrics is useful in assessing the relative impor-
tance of a variety of quantum resources including qubit
number, two-qubit gate fidelity, gate times, qubit stability,
error-correction cycle time, readout error rate, and others.
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APPENDIX A: A SUFFICIENT MODEL OF
CIRCUIT NOISE

Here we describe one circuit noise model that yields the
likelihood function noise model of Eq. (23). We expect
that this circuit noise model is too simplistic to describe
the output density matrix of the circuit. However, we also
expect that physically realistic variants of this circuit noise

model will also lead to an exponentially decaying likeli-
hood function bias. In other words, this circuit noise model
is sufficient, but not necessary for yielding the likelihood
function noise model used in this work. The circuit noise
model assumes that the noisy version of each circuit layer
V(x2;)U(0; x2;—1) implements a mixture of the target oper-
ation and the completely depolarizing channel acting on
the same input state, i.e.,

Ui (p) = pV (o ) UB; 25 1) pU (050 1) VT (x2))

I
+ (1 =p) oy (A1)
where p is the fidelity of this layer. Under composition of
such imperfect operations, the output state of the L-layer
circuit becomes

L > ton. = I
pL=p-00;0)|4)(4|0"(0;x) + (1 —p );- (A2)

This imperfect circuit is preceded by an imperfect prepa-
ration of |4) and followed by an imperfect measure-
ment of P. In the context of randomized benchmark-
ing, such errors are referred to as state preparation
and measurement (SPAM) errors [69]. We also model
SPAM error with a depolarizing model, taking the
noisy preparation of |4) to be psp|4){A| + (1 — psp)I /2"
and taking the noisy measurement of P to be the
positive operator-valued measure {py,(/ +P)/2 + (1 —
)l /2, pp(I — P)/2 + (1 — pa)l/2}. Combining the
SPAM error parameters into p = psppy, We arrive at a
model for the noisy likelihood function

- 1 _ -
P(d|0:f %) = 5[1+ (—=D)pp AO;3)], (A3)

where f = pp’ is the fidelity of the whole process for
generating the ELF, and A(#,X) is the bias of the ideal
likelihood function as defined in Eq. (22).

APPENDIX B: PROOF OF LEMMA 1

In this appendix, we prove Lemma 1, which states that
the CSBD coefficient functions of A(6;X) and A’(8;X)
with respect to x; can be evaluated in O(L) time for any
jef{1,2,...,2L}.

For convenience, we introduce the following nota-
tion. Let Wy = U'(0;x241) = UO; —x2i41), Waip1 =
Vi(xait2) = V(—x2142), Wir—2i = U(0;x2i41),  and
W4L_21‘_] = V(X2i+2), for i = O, 1, ‘e ,L - 1, and W2L =
P(9). Furthermore, let Wj’ =0pW; for j =0,1,...,4L.
Note that Wj’ =0 if j is odd. Then we define P,; =
WaWeayr---Wyif0 <a <b <4L,and P,; = I otherwise.

With this notation, Eq. (20) implies that
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0"(0;%) = Pog1 WaPay121-1 forall0 <a <2L—1, (B1)
00;X) = Pyr1p—1 WpPpi1ar forall2L+1 < b < 4L, (B2)
QT(Q,})P(G)Q(O,}) = PO,a—l WaPa+1,b—1 Wbe+1,4]_ forall0 <a < b <4L. (B3)

Moreover, taking the partial derivative of Eq. (20) with respect to 6 yields

L= 00(8;X)
0O;x) = 50
= Vo) U O;x20-1)V(x20-2) UO;x21-3) - - - V(xa) U(B;x3) V(x2) U(0; x1)
+ Vo) UO;x20- 1) V(x20-2) U (03 x21-3) - - - V(xa) U0 x3) V(x2) U0 x1)
+ V(xar) UO;x20-1) V(x21-2) UB;x210-3) - - V(xa) U (0;x3) V(x2) U(0; x1)
+ V(x2n)UO;x20-1) Vx2p—2) U0 x21.-3) - - - Vxa) U5 x3) V(x2) U (6 x1), (B4)
where
U@©;a) = % = —isin(a)P'(9) = isin(a)[sin(0)Z — cos(0)X] (B5)

is the partial derivative of U(6; ) with respect to 6, in which
P'(8) = —sin(0)Z + cos(6)X (B6)
is the derivative of P(6) with respect to 6. It follows that

a2
Q' 0;X) = Parq12041 Wy 12 Pars3ar + Porvi2043Way  4Porysar + - -
+ Por141-3Wyy 2 Par—141 + Parv1a—1 Wy, . (B7)

The following facts will be useful. Suppose that 4, B, and C are arbitrary linear operators on the Hilbert space H =
span{|0), |1)}. Then, by direct calculation, one can verify that

(014V(—x)BV(x)C|0) = (0]4[cos(x)] + i sin(x)Z]B[cos(x)] — isin(x)Z]C|0)
= %[cos(2x)((_)|A(B — ZBZ)C|0)

— isin(2x)(0|A(BZ — ZB)C|0)
+ (014(B + ZBZ)C|0)], (B8)
(0]4U(0; —x)BU(0;x)C|0) = (0]4[cos(x)I + isin(x)P(0)]B[cos(x)] — isin(x)P(6)]C|0)

= %{cos(2x)((_)|A[B — P(6)BP(6)]C|0)

— isin(2x)(0|A[BP(6) — P(6)B]C|0)
+ (014[B + P(6)BP()]CI0)}, (B9)
and
(0lAU(9; —x)BU (8;x)C|0) = (0|A[cos(x)I + i sin(x)P(9)]B[—isin(x)P’(8)]C|0)
= %[— cos(2x)(0|AP(8)BP'(9)C|0)

— isin(2x)(0|ABP'(6)C|0) + (0|AP(9)BP'(§)C|0)]. (B10)
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The following fact will also be useful. Taking the partial derivative of Eq. (22) with respect to 6 yields

A'(0;%) = (0107 (0;$)P©)Q'(6;%)10) + (0107 (0; )P (0)0(6;%)|0)
+ (0I[Q'(6;)]TP(6)0(6;%)10)
= 2Re[(010"(6;%)P(6)Q'(6;%)10)] + (0|07 (6;%)P'(6)Q(6;%)10). (B11)
In order to evaluate C;(0;X—;), S;(0;%-), B; (0;X-), Cj"(Q;)_ch), S;(G;?cﬁj), and Bj(0;%~;) for given 6 and X—j, wWe
consider the case j is even and the case j is odd separately.

Case 1:j =2(t+ 1) is even, where 0 < t < L — 1. In this case, W51 = V(—x;) and Wi;_»—1 = V(x;). Then, by Egs.
(22), (B3), and (B8), we obtain

A0;X) = (01Po 2 V(=X )Pas2.41—21-2 V(% )Par—2,4110)

= C;(0;%—;) cos(2x;) + S; (0; %) sin(2x;) + B; (0;X—;), (B12)
where
G (0;3~) = %((_NP 020(Pari2,41-20-2 — ZP2i2.41-2-2Z)Pay—214110), (B13)
Sj(0;3-) = —%((_)|Po,2t(P2z+2,4L—2z—2Z — ZPyis2.41-21-2)Par—2,4110), (B14)
B;(0;x-) = %<6|P0,2[(P2t+2,4L—2t—2 + ZP1241-20-2Z)Par_214110). (B15)

Given 0 and X—;, we first compute Py, Par42.41-21—2, and Pa; ;47 in O(L) time. Then we calculate C; (6;X,), S; (6;X~),
and B; (0;X-;) by Eqs. (B13)~«(B15). This procedure takes only O(L) time.

Next, we show how to compute C; (0;%-), S; (0;%-), and B (6; X-;). Using Eq. (B7) and the fact that P,, =
Poar—2t—-2War—2i—1Par—2: forany a < 4L — 2t — 1 < b, we obtain

Q' (0;%) = Par12041Way o Parv3ar—2—2War—2i—1Par 2141
+ Pary12043Wap yaParasar—2—2War—2-1Par 241
+ Por1ar—2-3Way o s War—2i—1Par—2041
+ Poriar—2—2War—2-1Way 2 Par—2e11,41
+ Por1ar—2—2War—2e-1Par—2041—3Wa; > Par—141
+ Poritar—2—2War—2—1Par—2ia0-1 Wy . (B16)

Then it follows from Egs. (B1) and (B16) that

0'6;3)P©6)Q 0;%) = AV Wa B Wiy 0y 1 CV + AP Wyt BP Wy g1 CP

= AV V(=x)BO V() CV + APV (—x)BP V(x) P, (B17)

where
AV = Py, (B18)
B = Prryar-2i-2, (B19)
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t

(1)

(& =E Puar—21a1—2k-1 Wiy o3 Par—2k+14L
=0

t
= Z Par—2ia1—2k—1U (05 Xok+1) Par—2k+1 4L
=0

2
AP = Po o,

L1
2
B = E Poi2.41—2k—1 Wy i Par—2k41,4L-21—2
k=t+1
-1

= E Po2a1—2k—1 U (05 X2541) Par—2k11 4L—21—25
k=t+1

ng) = Par 2141
Meanwhile, we have
01 @:; )P (0)00;7) = AP W1 BY Wi 21 € = A V(—x)BE V() €,
where

3
AY = Py,
3
BY = Pyi2211P (0)Pors1 41212,

C = Py sar.
Combining the above facts with Egs. (B8) and (B11) yields
A'(0;X) = C;(0;X~) cos(2x;) + S, (0;X) sin(2x;) + B (0; %),
where
G (0:3) = Re[(014;" B, — ZB;"2)C;"[0)] + Re[ (014" (B — ZB Z)C}”'10)]
1

+ 20147 (BY — ZBPZ)c|0),

N

S;(0;%-) = Im[(014{" (B{"Z — ZB{")C{"10)] + Im[(014,” (B Z — ZB{”) C{ |0)]

I - _ _ _
-3 014 B"Z — ZB)C1)0)

B(0:%~) = Re[(014{" (B" + ZB{"Z)C{"10)] + Re[(014” (B” + ZB{PZ)C{?|0)]
1

+ —(014% B® + ZBP 7)c?0).

N |

(B20)

(B21)

(B22)

(B23)

(B24)

(B25)
(B26)
(B27)

(B28)

(B29)

(B30)

(B31)

Given 6 and X—;, we first compute the following matrices in a total of O(L) time by standard dynamic programming

techniques:
(1) Poos, Poryo.ar—21—2, Par—s1a1, Paryoor—1, Porg1.41-20-2;

(2) Par—otar—2k—1 and Py _opy1ar fork =0,1,...,¢
(3) Pary2ar—2k—1and Py ppy1ar-22 fork=t+1,1+2,...,L — L.

010346-29



WANG, KOH, JOHNSON, and CAO PRX QUANTUM 2, 010346 (2021)

Then we compute Afi), Bt(i), and Cfi) for i =1,2,3 by Egs. (B18)(B23) and (B25)-(B27). After that, we calculate
o (0;%-), S (6; X-;), and B;(6; X-;) by Egs. (B29)~«(B31). Overall, this procedure takes O(L) time.

Case 2:j = 2t+ 11is odd, where 0 < ¢ < L — 1. In this case, Wy, = U(0; —x;) and Wy, _»; = U(0;x;). Then, by Egs.
(22), (B3), and (B9), we obtain

A@0;%) = (01Po2—1UO; =X )Pars1 41201 U X)) Par—2041.4210)

= Cj(0;X~;) cos(2x;) + S; (0; %) sin(2x;) + B; (0;X), (B32)
where
- 1 - _
Ci(0;x-) = §(0|P0,2r71 [Pay14r-20—2 — P(O)Pory141-201P(0)Par—2141,4210), (B33)
R i - _
Sj(0;x~) = _5<O|P0,2t71[P2t+1,4L72t71P(9) — P(0)P2ry1,40-20-11Par—20+14110), (B34)
- 1 - _
B;(0;x~) = E<0|P0,2t71[P2t+1,4L72171 + P(O)Pr1,40-20-1P(0)1Par—21114210). (B35)

Given 6 and X—;, we first compute Poo,—1, Pa141-2i—1, and Pa;_p414, in O(L) time. Then we calculate C;(6;X-),
S; (0, ?cﬁj), and B; (6;X-,) by Eqs. (B33)~«(B35). This procedure takes only O(L) time.

Next, we describe how to compute C’J’-(O;)_Lj), S; (0;%-,), and B (0;%-,;). Using Eq. (B7) and the fact that P, =
Pa,4L—2t—1 W4L—2tP4L—2t+l,b for any a < 4L — 2t < b, we obtain

0 (0;%) = Pars1p141Way o Pori3 a1—20-1 War—2:Par—2e11 41
+ Port12043Woy 1 4Porvsar—2-1 War—2Par—2i41.41
+ Por141-2-3Wy 9y o Par—2i—140-20-1 War—2:Par 211,41
+ Por1ar—2—1 Wy 5 Par—2e141
+ Por1ar—2i—1 War—2tPar 201 40—20-1 Wiy —0ii 2 Par—2143.41
+ e
+ Port1an—20—1 War—2Par—2i41.41—3Wyy o Par—141

+ Por1an—20—1 War—2Par—2r41.40-1 Wy . (B36)
Then it follows from Egs. (B1) and (B16) that
0" 0:%)P6)0 0;%) = AV Wa BV Wy 2,V + 4P WoBO W, C2
+ Ai” WztB§3) W4L721C§3)
= 4;"U0: —x)B " U0:x)C1Y + 4P U0 —x;)BP U (0;x,)C}”

+ AP U®O; —x)BY UB;x)CY, (B37)
where
1 _
4,7 = Popi, (B38)
n _
B, = Pyt1ar-2-1, (B39)

010346-30



MINIMIZING ESTIMATION RUNTIME... PRX QUANTUM 2, 010346 (2021)

-1
(1)
G = E Par 241402k 1 Wy o Par—2k+141
k=0
-1

= E Par—2ir140-2k—1 U (05 X241 Par—2k41 .41,
k=0

2

AP = Pyy .,
2

Bt( ) = Prprar—2i-1,
2

C; ) = Par o141,

AP = Py,
-1

B§3) = Z Pori1ar—2k-1 Wy s Par—2k+1.41-20-1
k=t+1
-1

= E Py ar—2k—1U (05 X2541) Par—2k1 41—21—15
fe=t+1

¥ = Py o141
Meanwhile, we have
O"(0; %P (0)00;%) = A WyBP Way_2,CY = AP U®B; —x)BP U®; x,)CY,
where
AY = Pooi1,

4
B§ ) — Poi120-1P (O)Pori140-21-1,

Y = Par o141
Combining the above facts with Egs. (B9), (B10), and (B11) yields
AN (0;¥%) = Cj/ (0;%-;) cos(2x;) + Sj’ (0;X-;) sin(2x;) + B; (0;%-),
where
C;(0;%) = Re{(014; " [Bi" — P(0)B;"P(6)]C" |0}

— Re[(014,”P(0)BPP'(9)C710)]

+Re{(014, (B — P(©)BP(©)1C;”|0)}

+ %<6|A§‘” (B — P©)B" P(6)1C;"|0),
S} (0:%-) = Im{(014;"[B{" P(6) — P(©)B;"1C;"|0)}

+Im[(014;” B” P'(6)C;” |0)]

+ Im{(0]4[B{"P(6) — P(9)B;"1C”10)}

~ SOUAP B PO ~ POBOICIN0),

010346-31

(B40)

(B41)
(B42)
(B43)
(B44)

(B45)

(B46)

(B47)

(B43)
(B49)
(B50)

(B51)

(B52)

(B53)



WANG, KOH, JOHNSON, and CAO

PRX QUANTUM 2, 010346 (2021)

B} (0:%-) = Re{(014;"[B]" + P(®)B;"P(®)]C;"|0)}

+ Re[(0142 P©)BP P (0)C|0)]

+ Re{(0147[BY + P6)BY P(6)]1C[0)}

1 - _
+ 5<0|A§“)[B§‘” +P©)BYP©)1C10).

(B54)

Given 6 and X-;, we first compute the following matrices in a total of O(L) time by standard dynamic programming

techniques:

(1) Pooi—1, Porr1ar—2i—15 Par—air140, Por1 201, Pory1a—20-15

(2) Par—2rv141-2k—1 and Pyy_opy1 4, fork =0,1,...,¢—

(3) Pygrar—2k—1 and Pyy_ppi1ar—2—1 fork=t+1,t+2,...,L — 1.

Then we compute Agi), B,(i), and Cfi) for i =1,2,3,4 by Eqgs. (B38)+(B46) and (B48)(B50). After that, we calculate
C (0;%-), S:(0;%-;), and B; (0;X-,) by Egs. (B52)~(B54). Overall, this procedure takes O(L) time.

APPENDIX C: ALGORITHMS FOR MAXIMIZING
THE SLOPE OF THE ANCILLA-FREE
LIKELIHOOD FUNCTION

In this appendix, we present two algorithms for max-
imizing the slope of the ancilla-free likelihood function
P(d|0;f ,X) at a given point & = u (i.e., the prior mean
of 6). Namely, our goal is to find ¥ € R?" that maximizes
P (s f .01 =f 1A (u33)1/2.

Similar to Algorithms 1 and 2 for Fisher informa-
tion maximization, our algorithms for slope maximization
are also based on gradient ascent and coordinate ascent,
respectively. They both need to call the procedures in
Lemma 1 to evaluate C'(u;X—;), S'(1;X~;), and B'(u; X)
for given p and X—;. However, the gradient-ascent-based
algorithm uses the above quantities to compute the par-
tial derivative of [A’(u;X)]> with respect to x;, while the
coordinate-ascent-based algorithm uses them to directly
update the value of x;. These algorithms are formally
described in Algorithms 3 and 4, respectively.

APPENDIX D: ANCILLA-BASED SCHEME

In this appendix, we present an alternative scheme,
called the ancilla-based scheme. In this scheme, the ELF
is generated by the quantum circuit in Fig. 21, where
U0;x25-1), V(xz), and 0(9;X) are the same as in the
ancilla-free scheme [i.e., they satisfy Eqgs. (18)~20)],
in which ¥ = (x1,x,...,x_1,%y) € R* are tunable
parameters.

Assuming the circuit in Fig. 21 is noiseless, the AB ELF
is given by

P(d|9;%) = %[1 + (=1)?A0;%)] foralld e {0, 1},
(D1)

(

where

A0;X) = Re[(4]0(0;X)|4)] (D2)

is the bias of the likelihood function. In particular, if X =
(/2,m/2,...,m/2), we get A(8;X) = (—1)F cos(LH) and
call the corresponding likelihood function the ancilla-
based Chebyshev likelihood function.

It turns out that most of the argument in Sec. III A still
holds in the ancilla-based case, except that we need to
replace A(Q;?c)_with A(8;X). So we use the same nota-
tion (e.g., |0), |1), X, Y, Z, I) as before, unless otherwise
stated. In particular, when we take the errors in the cir-
cuit in Fig. 21 into account, the noisy likelihood function
is given by

Pd|6;f ,5) = %[1 T (=D A@;%)] foralld e {0,1},

(D3)

where f is the fidelity of the process for generating the
ELF. Note, however, that there does exist a difference
between A(0;X) and A(0;X), as the former is trigono-
multiquadratic in X, while the latter is trigono-multilinear
inXx.

We tune the circuit parameters X and perform Bayesian
inference with the resultant ELFs in the same way as
in Sec. lIIB. In fact, the argument in Sec. IIIB still
holds in the ancilla-based case, except that we need to
replace A(6;x) with A(;X). So we use the same notation
as before, unless otherwise stated. In particular, we also
define the variance reduction factor V(u, o;f ,x) asin Egs.
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Algorithm 3: Gradient ascent for slope maximization in the ancilla-free case

Input: The prior mean p of 6, the number L of circuit layers, the step size schedule § : ZZ° — R*, the error tolerance e
for termination.

Output: A set of parameters & = (1, T2, ...,z21) € R?*F that are a local maximum point of the function |A’(u; Z)|.
Choose random initial point Z(*) = (:r(l()),:c( ) :17(20L>) € (—m, 1?5
t < 0;

while True do

for j < 1 to 2L do

t t t t t
Letx()—(<),...,x5)1, §<£17" xél)/

Compute C/(t) = C(w; ﬂm) S_;(t) S5 (s ”(t)) and B’(t) B (; T )) by using the procedures in Lemma 1;
Compute A (u; @) at & = x(t) as follows:

A = Al ) = OV cos (2087) + 5 sin (227) + B (C1)

Compute the partial derivative of A’(u;#) with respect to z; as follows:

0A
'y](f’) = %\- w1 =2 ( C{m sin (21:50) + Sjl-(t) cos (2%@)) ; (C2)
end
Set #t+D) = # 4 5(1)V®) | where V) := (24’ 2 A 0O~ .,QA’(t)'yétL)) is the gradient of (A’(u; £))? at
z=z";
if |A(u ,f<f+1>) — A (11;7Y)| < € then
| break;
end
t—t+1;
end
Return 2+ = (xgH'l), métﬂ) m(t;l)) as the optimal parameters.

(31) and (32), replacing A(0;X) with A(0;X). As shownin  and

Appendix F,
V(051 %) ~ f 1[N (9]
when both o and fare small. (D5)
L - FHAN(6;5))?
Vi, o5f ) (s f X)) = 1 —/2[AG: D] Namely, the Fisher information and slope of the likeli-
) ’ hood function P(d|0;f ,X) at & = u are two proxies of the
when o is small (D4)  variance reduction factor V(u,o;f ,X) under reasonable

Algorithm 4: Coordinate ascent for slope maximization in the ancilla-free case

Input: The prior mean p of 6, the number L of circuit layers, the error tolerance € for termination.

Output: A set of parameters & = (1, x2,...,221) € (—,7]** that are a local maximum point of the function
| A (s 7).

Choose random initial point #© = (z{”, 2, .., :céog) € (—m, 7?5

t<+1;

while True do
for j <+~ 1 to 2L do

(¢ t t t—1 t 1
Let & () (m()...,xi)l, §+1)"" ( ))

Computc C; 0= = C(1; “(tJ)) S/(t) = S/( ; 4@3) B/(t) = Bj(u; T il )) by using the procedures in Lemma 1;

Set x§ ) = Arg (sgn ( ;(t)) (C;-(f) + S;-m)) /2, where sgn (z) = 1 if z > 0 and —1 otherwise;
end
if |A/(11;79) — A/ (11; Z%7V)| < € then
| break;
end
tet+1;
end

© o0

Return £ = (2 :ch) as the optimal parameters.
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A=

0) H

|A4)

de {0,1}

—{U@2) H

V(z2) H U(8;x3) H V(za) F aE 4 U(;z20-1) H V(zaz) %

FIG. 21.

assumptions. Since the direct optimization

in general, we tune the parameters X by optimizing these

proxies instead.

Quantum circuit for the ancilla-based engineered likelihood functions.

of V is hard  following procedures for evaluating the CSD coefficient
functions of the bias A(#;X) and its derivative A’(0;X)

with respect to x; forj =1,2,...,2L.

1. Efficient maximization of proxies of the variance

reduction factor

Now we present efficient heuristic algorithms for maxi-
mizing two proxies of the variance reduction factor V—the
Fisher information and slope of the likelihood function
P(d|0;f ,X). All of these algorithms make use of the

a. Evaluating the CSD coefficient functions of the bias
and its derivative

Since A(f;X) is trigono-multilinear in X, for any
J €{1,2,...,2L}, there exist functions C;(0;X-;) and
S;(0;X-;), that are trigono-multilinear in )Lj = (x1,...

]

Algorithm 5: Gradient ascent for Fisher information maximization in the ancilla-based case

Input: The prior mean pu of 6, the number

L of circuit layers, the fidelity f of the process for generating the ELF, the

step size schedule ¢ : ZZ° — R*, the error tolerance ¢ for termination.

Output: A set of parameters & = (z1, :Lg, .

Choose random initial point #® = (x<0)

t <+ 0;
while True do
for j < 1 to 2L do

if |Z(; f,20D)
| break;

end

tet+1;

end

Return 70+ = (z (1t+1)7 x;t+1)a ) m(thH))

,ach) € R?*” that are a local maximum point of the function Z(y; f, ©).

~xy)) € (—m Pt

Let x<t>_( (t)7---7m5t)17I5:)—17" I(Qf[),)
Compute C(f) = Cj(u; ”m) Sm =55 (u; f(f)) C"m = C%(p; f(f)) and S/(f) S5 (s @ il )) by using the
procedures in Lemma 2;
Compute A(u; @), A'(14; Z) and their partial derivatives with respect to z; at @ = #*) as follows:
A = A 7)) = C(.t) cos (x;) + Sj(-t) sin (x;), (D33)
N = N (2P = C;-(t) cos (x;) + S]’Ki> sin (z;), (D34)
OA(p; s
X = #\Hm = —C}"sin (z;) + 5} cos (x;), (D35)
A
’(t) W| = —C’_;m sin (z;) + S]’.(t) cos (z;) ; (D36)
Compute the partial derivative of Z(u; f, ) with respect to z; at & = 2 as follows:
) 81(#; 1, f) 2f2 [(1 - f2 (A(t))Q)A/(t)X;(t) + sz(t)X;t)(A,(t))z]
Vo e e = > (D37)
oz, L (A0
end
Set 7+ = 20 4+ 6() VI (13 £, 7) |z, where VI(us f,D)|z—ze0 = (07, %", - 252):

— I(w; f,@Y)| < € then

as the optimal parameters.
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Algorithm 6: Coordinate ascent for Fisher information maximization in the ancilla-based case

Input: The prior mean p of 6, the number L of circuit layers, the fidelity f of the process for generating the ELF, the

error tolerance € for termination.
Output: A set of parameters ¥ = (21, z2,. . .
Z(w; f,2).
Choose random initial point Z(*) = (xg()), méo), CoT éOL))
t+ 1;
while True do

for j <+ 1 to 2L do
t t t t—1 t—1
Let #) = («f”,...,2{" a7V, 2l )
H> T
procedures in Lemma 2;
Solve the single-variable optimization problem

J

swar) € (—m, )"

Compute C(t> =Ci(u _’(t)) S = S;(p; :E(:J)) C/(t)

that are a local maximum point of the function

€ (—m,m*5;

Ci(w; *(t)) and S'(t)

’ —(t)
2 = Sj(u; 72;) by using the

12 ( '™ cos (2) + S’<t> sin (z))2

arg max

2
z 1—f2 (CJ( ) cos (2) + S](. ) sin (z))

by standard gradient-based methods and set x§t) to be its solution;

end
if [Z(u; f,2Y) — Z(w; f, 24 Y)| < € then
| break;
end
tet+1;
end
Return £ = (m(lt)7 mé ) xgg) as the optimal parameters.
Xj_1,Xj 41, -.,X21), such that With this notation, Egs. (20) and (B4) imply that
- - - ) (0;%) = Py 1\WoPyi10—1 forall0 <a<2L—1
A0;3) = Cj(0;%-) cos(x;) + S ;%) sin(x;). (D6) © OamtTatarl 2l (DS)
It follows that and
R R Lo Q' (0;%) = PogW\Pyor—1 + PopWyPapp 1 + - -
A(0;x) = C(0;x~) cos(x;) + S;(0;x;) sin(x;) (D7)

is also trigono-multilinear in ¥, where C;(0;X-) =
09C; (0 x,,) and S’ (0;%-;) = 38, (0;X~;) are the partial
derivatives of C; (0 X-;) and S; (0;%—;) with respect to 6,
respectively.

Our optimization algorithms require efficient proce-
dures for evaluating C; (6; xﬁj) S; (6 xﬁj) C ; xﬁj) and
S’ (0;%-;) for given 6 and X . It turns out that these tasks
can be accomplished in O(L) time.

Lemma 2. Given 0 andX—;, each of C; (0;%—;), S; (0;X—),
q (0;X-), and S]’ (0;X~;) can be computed in O(L) time.

Proof. For convenience, we introduce the following nota-
tion. Let Wzi = V(xor—2:) and Wy 1 = U(@;xp12;—1) for
i=0,1,. — 1. Furthermore, let W; = 9, W; for j =
0,1,... 2L — 1 Note that W =0 ifj is even. Then we
deﬁnePa,;,_WWaH Wy 1f0<a<b<2L—1 and
P, = I otherwise.

+ Poar—aWs, 3Par—221-1 + Poor—2Ws, .
(D9)

In order to evaluate C; (0;X—), S; (0;%—;), C (0;%-;), and
S; (0;%-;) for given 6 and X—;, we consider the case j is
even and the case j is odd separately.

Case 1: j =2(L—1t)iseven, where 0 <t <L — 1. In
this case, Wy, = V(x;). Using the fact that

0(0;X) = Poor 1 WaPary120-1
= Poo—1[cos(x;)] — isin(x;)Z1Py121-1
= ¢c08(X; )P0 21— 1P214121-1
— isin(x;)Po2—1ZPor1 211, (D10)
we obtain
A(0;X) = C;(0;X—;) cos(x;) + S; (05 X-,) sin(x;), (D11)

where

C; (0;%-;) = Re({0|Po 21— 1P2+121-110)), (D12)
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FIG. 22. Comparison of the Fisher information of the AB ELF
and AB CLF for various 6 € (0, 1) when the number of circuit
layers is L = 6, the fidelity of each layer is p = 0.9, and there is
no SPAM error (i.e., p = 1). For the AB ELF, X; is a global max-
imum point of Z(8;f,%) for given 6 and f = pp’ = 0.531441.
For the AB CLF, Xy = (n/2,7/2,...,7/2) is fixed. One can
see that the Fisher information of the AB ELF is larger than
that of the AB CLF for the majority of 6 € (0, ). Furthermore,
the Fisher information of the AB CLF changes dramatically
for different 6 (in fact, it is exactly 0 when 6 = jx /L for j =
0,1,...,L), whereas the Fisher information of the AB ELF is
less sensitive to the value of 6.

S; (0;%) = Im((0|Po2—1ZP2s1121-110)). (D13)

Given 0 and )Lj, we first compute Py ,—1 and Pyq121-1
in O(L) time. Then we calculate C; (9;X—;) and S; (0;%—;)
by Egs. (D12) and (D13). This procedure takes only O(L)
time.

Next, we describe how to compute CJ’ (0;%-;) and
S; (0;%-;). Using Eq. (D9) and the fact that P,, =
Pyoi—1 WaPori1p for any a < 2¢ < b, we obtain

Q' (0;%) = PooW Pao—1 WarPor120-1
+ Poa WPy 1 WaPasi121-1
_|_ .
+ Popi—2Wa  WaiPary1 211
+ Pooi— i WouWy,y  Paria i1
+ .
+ Popi—1 WauPai120-aWh _3Par—221-1
+ Popi1 WaPa120-2W; . (D14)

Let

t
A= E Poos—aWs. 1 Pasar1

s=1

t
=" Poas2U (0: %21 -241)Pasi-1,

(D15)
s=1
L
B = Z Pory125-2Whs 1 Pasor—1
s=t+1
L
= Z Poiy126-2U (05 %21 2611)Paspr-1- (D16)

s=t+1

Then Eq. (D14) yields

0/ (0;%) = AWPari120-1 + Por1 WaB;
= A [cos(x;)] — isin(x;)Z1Pars120-1
+ Pop—1[cos(x; I — i sin(x; )Z)B;
= ¢co8(x;)(APort120-1 + Po2i—1B1)
— isin(xj)(AtZP2,+1,2L_1 + P0,2t—IZBt)a
(D17)

which leads to

A'(0;%) = Cj(8;X) cos(x;) + S} (0; %) sin(x;),
(D18)

where

C]/'(Q;)_é—_-j) = Re[(0[(4,Par122-1 + Po2i—1B)0)],
(D19)

8(0:%—) = Im[(01(4,ZP2 11201 + Po2-1ZB)[0)].
(D20)

Given 6 and X-;, we first compute the following matrices
in a total of O(L) time by standard dynamic programming
techniques:

(1) Pops—2and Py fors =1,2,....¢
(2) Pyqips—and Pyop g fors =14+ 1,642,...,L;
(3) Popi—1 and Pyiy107-1.

Then we compute 4, and B, by Egs. (D15) and (D16). After
that, we calculate Cj’ (0;X%-,) and Sj’ (6;X%-;) by Egs. (D19)
and (D20). Overall, this procedure takes O(L) time.
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Algorithm 7: Gradient ascent for slope maximization in the ancilla-based case

Input: The prior mean p of 6, the number L of circuit layers, the step size schedule § : ZZ° — R*, the error tolerance €
for termination.

Output: A set of parameters & = (1, T2, ...,z21) € R*F that are a local maximum point of the function |A’(u; Z)|.
Choose random initial point Z(*) = (:r(l()),:c( ) :17(20L>) € (—m, 1?5
t < 0;

while True do
for j «+ 1 to 2L do

—(t t t t t
Let ()—(<),,I5)1, ;4217" Iég

Compute C/(t) = C(w; ﬂm) and S’m S5 (s i >) by using the procedures in Lemma 2;
Compute A (@) at & = a:(t) as follows

A® = A (145 ’I(t)) = /(t> cos ( (t)) + S/(t) sin ( (t>> (D38)

Compute the partial derivative of A’(u; ) with respect to z; as follows:

. ON(p; %) = 0D sin (29) + 8 cos (2
v = lzzty = —C" sin + S5 cos ; (D39)
J oz, i
end
Set #+D = 7 4 §(1)V® | where V® := (20~ 27/ @)D .,2A'<t)fy§2) is the gradient of (A’(y; T))?
z=z";
if |A (1 f<t+1>) A (11;7)| < € then
| break;
end
t—t+1;
end
Return #zHY = (xgH'l), xéH—l) m(t;l)) as the optimal parameters.

Case 2:j =2(L —t)—1is odd, where 0 <t <L — 1. PouotWort1Poap forany a < 2t 4+ 1 < b, we get
In this case, W1 = U(0;x;). Using the fact that

0'(0;X) = PooWP22:Wars1Pari2.21-1
+ Poo WiPs o Warg1Paa 11
+ Poor-2 Wy ParoWart1Parsa o1 -1
+ Po oW\ Parsapr—1

0(0;%) = PopWar1Payapr-1
= Poo[cos(x;)] — isin(x;)P(0)]Py12.21-1
= c08(x;)Po2P2s+220-1
— isin(x; )Py P(0)Pri221-1, (D21)

we obtain + PooiWars1Paria a2 Way3Poirapi—1
+ P

AB: %) = G (033-) cos() + 5 (0; %) sinC), (D22) + PooiWars1Parsaoi—aWay _3Par—221-1

where + Po2Wors1Pars2 ot —2 Wy - (D25)
G (0;%~) = Re((01Po2:Pa12.20-110)), (D23)  Let
Sj(0:%) = Im[(0|Po2P(0)Pa220-110)].  (D24) Ai=) Pos oW Pox
s=1
Given 0 and X—;, we first compute Py, and Py in d
O(L) time. Then we calculate C;(0;%-;) and S;(0;X-;) = ZP 025-2U (03 %21 254 1) Pas 21 (D26)
by Egs. (D23) and (D24). This procedure takes only O(L) s=1
time.
Next, we describe how to compute C; (0;%—;) and B, = Z Poi225—2Wys 1 Pasor—1
S(0;X-). Using Eq. (D9) and the fact that P,; = s=t42

010346-37



WANG, KOH, JOHNSON, and CAO

PRX QUANTUM 2, 010346 (2021)

Algorithm 8: Coordinate ascent for slope optimization in the ancilla-based case

Input: The prior mean p of 6, the number L of circuit layers, the error tolerance e for termination.

Output: A set of parameters & = (z1, z2, .
|A (s 7).

.. 2r) € (=, 7]*F that are a local maximum point of the function

Choose random initial point #» = (acgo), xgo), e Z;OL)) € (—m,n]*,;

t<+1;
while True do
for j < 1 to 2L do

Let fg} = (a:(lt), e 93521, mgtll), .. ,xg;l));
Compute C;.(t) = Cj(p; a'c'(fj)) and S;(t) =S5 (s a_:'g])) by using the procedures in Lemma 2;
® _ (0, o).
Set o) = Arg (€} + 157"}
end
if [A (u; 2D) — A (u; Z47Y)] < € then
| break;
end
t—t+1;
end

Return £ = (:cgt),:cg), R a:(th)) as the optimal parameters.

L

= E Pyi225-2U (05 %210-2541) Pas 211
s=t+2

(D27)

Then Eq. (D25) yields

0 (0;X) = AWy 1Paryaoi—1 + PopWh 1 Prgapr—1

+ Po2 Wt 1B,

= A [cos(x;)] — isin(x;)P(0)1Par+2.20-1
— i8in(x;)Po 2P (0)Pary2.20-1
+ Polcos(x;)I — isin(x;)P(0)]B;

= cos(x;) (AiP2r42,20-1 + Po2iBr)
— isin(x; ) [AP(0)Port221-1
+ Po2iP' (0)Pari221—1 + Po2P(0)B,], (D28)

which leads to

A'(0;X) = Cj(8;X~) cos(x;) + S} (0; %) sin(x;),
(D29)

where
G} (6;%~) = Re[{01(4,Par22r-1 + Po2B)I0)], (D30)
5}(0;%~) = Im{(0|[4,P(0)Pary2.21-1

+ Po2P (0)Pas1221—-1 + Po2P(9)B]10)}.
(D31)

Given 6 and X—;, we first compute the following matrices
in a total of O(L) time by standard dynamic programming
techniques:

(1) P0,2s—2 and P23,2t fors=1,2,...,t

(2) Pygops—and Pygop g fors =1+42,t43,...,L;
(3) Poprand Pypo11.

Then we compute 4, and B, by Egs. (D26) and (D27). After
that, we calculate Cj’ (0;%-,) and Sj’ (6;X-;) by Egs. (D30)
and (D31). Overall, this procedure takes O(L) time. |

b. Maximizing the Fisher information of the likelihood
function

We propose two algorithms for maximizing the Fisher
information of the likelihood function P(d|6;f ,X) at a
given point 8 = u (i.e., the prior mean of 8). Namely, our
goal is to find ¥ € R?" that maximizes

LA (w01
1 —f2[A(u; 0]

I(wf,%) = (D32)

These algorithms are similar to Algorithms 1 and 2 for
Fisher information maximization in the ancilla-free case,
in the sense that they are also based on gradient ascent and
coordinate ascent, respectively. The main difference is that
now we invoke the procedures in Lemma 2 to evaluate
C(u;X—), S(usx—;), C' (s x—;), and §'(u;x-;) for given
p and X, and then use them to either compute the par-
tial derivative of Z(u;f ,X) with respect to x; (in gradient
ascent) or define a single-variable optimization problem
for x; (in coordinate ascent). These algorithms are formally
described in Algorithms 5 and 6.

We have used Algorithms 5 and 6 to find the parameters
¥y € R?! that maximize Z(6;f ,X) for various 6 € (0, )
(fixing /') and obtained Fig. 22. This figure indicates that
the Fisher information of the AB ELF is larger than that of
the AB CLF for the majority of 6 € (0, ). Consequently,
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FIG. 23. Comparison of the values of |A’(6;Xy)| for the slope-

based AB ELF and AB CLF for various 6 € (0,77r) when the
number of circuit layers is L = 6. For the AB ELF, X, is a
global maximum point of |A’(#; X)| for given 8. For the AB CLF,
Xo = (w/2,7/2,...,m/2) is fixed. This figure implies that the
slope-based AB ELF is steeper than the AB CLF for the majority
of 6 € (0, ). Furthermore, the slope of the AB CLF changes dra-
matically for different 6 (in fact, it is exactly 0 when 6 = j /L
for j =0,1,...,L), whereas the slope of the AB ELF is less
sensitive to the value of 6.

the estimation algorithm based on the AB ELF is more effi-
cient than that based on the AB CLF, as demonstrated in
Sec. V.

¢. Maximizing the slope of the likelihood function

We also propose two algorithms for maximizing the
slope of the likelihood function P(d|6;f ,X) at a given

= True LF
0.14 Fitted LF

-0.5 0.0 0.5 1.0 15 2.0 2.5

FIG. 24. The true and fitted likelihood functions when L =
3, f =0.8, and 0 has prior distribution N (0.82,0.0009). The
true likelihood function is generated by Algorithm 6. During
the sinusoidal fitting of this function, we set ® = {x — o, u —
0.80,...,u4+0.80,u+ 0o} (i.e., ® contains 11 uniformly dis-
tributed points in [u — o, + o]) in Eq. (D41). The fitted like-
lihood function is P(d|6) = [1 + (—1)%f sin(#6 + b)]/2, where
r = —2.81 and b = 1.55. Note that the true and fitted likelihood
functions are close for 8 € [0.67,0.97].

point & = u (i.e., the prior mean of #). Namely, our
goal is to find ¥ € R?" that maximizes |P'(d|u;f ,X)| =
fIA (3 %)1/2.

These algorithms are similar to Algorithms 3 and 4 for
slope maximization in the ancilla-free case, in the sense
that they are also based on gradient ascent and coor-
dinate ascent, respectively. The main difference is that
now we invoke the procedures in Lemma 2 to evaluate
C'(u;X—) and S'(u;X-;) for given w and X—;. Then we
use these quantities to either compute the partial deriva-
tive of [A (u; X)]* with respect to x; (in gradient ascent) or
directly update the value of x; (in coordinate ascent). These
algorithms are formally described in Algorithms 7 and 8.

We have also used Algorithms 7 and 8 to find the param-
eters X, that maximize |A’(6;X)| for various 6 € (0, ) and
obtained Fig. 23. This figure implies that the slope-based
AB ELF is steeper than the AB CLF for the majority of
0 € (0, 7) and hence has more statistical power than the
AB CLF (at least) in the low-fidelity setting by Eq. (D5).

2. Approximate Bayesian inference with engineered
likelihood functions

With the algorithms for tuning the circuit parameters X
in place, we now briefly describe how to perform Bayesian
inference efficiently with the resultant likelihood functions.
The idea is similar to that in Sec. IV B for the ancilla-free
scheme.

Suppose that 6 has prior distribution A (u,0?), where
o K 1/L, and that the fidelity of the process for gen-
erating the ELF is /. We find that the parameters X =
(x1,X2,...,xy) that maximize Z(u;f ,X) (or |A’(u;X)])
satisfy the following property: when 6 is close to u, i.e.,
6 €u—0(),u+ O(o)], we have

1 + (=14 sin(r0 + b)
2

for some r,b € R. We find the best fitting » and » by
solving the least-squares problem

P(d|6;f %) ~ (D33)

(#*,b*) = argmin Z | arcsin[A (0;%)] — 10 — b,
rb o geo
(D34)

where ® = {01,0,,...,6;} C [u — O(o), u + O(o)]. This
least-squares problem has the analytical solution

( Z* ) =Atz = AT4)7 14"z, (D35)
where
6, 1 arcsin[A (61;X)]
0 1 arcsin[A (62;X)]
) (D36)

A= . . 5 z=

arcsin[ A (0x; X)]
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Comparison of Bias(fi,)? and Var({i,) during the inference process for the AB ELF and AF ELF. Here IT has true value 0.6

and prior distribution A/(0.64,0.0009), the number of circuit layers is L = 6, each layer has fidelity p = 0.9, and there is no SPAM
error (i.e., p = 1). Each plot is generated by simulating the inference process 300 times. Note that Bias({i,)> < Var({l;) as soon as ¢
becomes sufficiently large. The variance of (i, increases at the early stage of the algorithm, because we always start with the same [i
and it takes a certain number of Bayesian updates for /i, to become sufficiently dispersed.

In Fig. 24 we present an example of the true and fitted
likelihood functions.

Once we obtain the optimal » and b, we approximate the
posterior mean and variance of 6 with those for

1 + (=) sin(r6 + b)

which have analytical formulas. Specifically, suppose that
6 has prior distribution A (144, akz) at round k. Let d; be
the measurement outcome, and let (ry, by) be the best-
fitting parameters at this round. Then we approximate the
posterior mean and variance of 6 by

Pdo;f) = 2 (D37)
—1)% e*r%”lg/zr o2 cos(r, +b
R (=1)%fe rzkzk (Frpek k)’ (D38)
1+ (= D)% fe™"%%/? sin(riur + by)
s o, fRode WP 4 (< D)% sin(rigu + b))
o =o0; |1 - o . (D39)
[1+ (= 1Ddfe 5% sin(rips + b) 1P

After that, we proceed to the next round, setting
N (tisrs crkz 1) as the prior distribution of 6 for that round.
The approximation errors incurred by Egs. (D45) and
(D46) are small and have negligible impact on the perfor-
mance of the whole algorithm for the same reason as in the
ancilla-free case.

APPENDIX E: BIAS AND VARIANCE OF THE
ELF-BASED ESTIMATOR OF II

In this appendix, we state the following two facts
about the ELF-based estimator /i, of IT during the infer-
ence process [recall that we use the Gaussian distri-
bution N'(fi,,67) to represent our knowledge of IT at
time ¢, where [i; and &, are random variables depending

(

on the history of random measurement outcomes up to
time ¢].

(a) In both the ancilla-based and ancilla-free cases, the
squared bias of (i, is smaller than its variance,
i.e., Bias(/1,)* = (E[f1,] — IT1)> < Var({,) for large
enough ¢. See Fig. 25 for examples.

(b) In both the ancilla-based and ancilla-free cases, the
perceived variance 62 of I is often close to the vari-
ance of fi,, i.e., 5> &~ Var(ji,) with high probability
for large enough ¢. See Fig. 26 for examples.

Combining these facts, we know that, for large enough
t, MSE(,) = E[(&i, — T1)*] < 267 with high probability.
Similar statements hold for the ELF-based estimator i, of
0 during the inference process.
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FIG. 26. Comparison of E[62] and Var(ji,) during the inference process for the AB ELF and AF ELF. Here IT has true value 0.6
and prior distribution A/(0.64,0.0009), the number of circuit layers is L = 6, each layer has fidelity p = 0.9, and there is no SPAM
error (i.e., p = 1). Each plot is generated by simulating the inference process 300 times.Note that E[6] ~ Var(ji,) once ¢ becomes
sufficiently large. Furthermore, we discover that 62 does not vary much among different runs of the algorithm. Namely, 62 ~ E[572]
with high probability. So 62 ~ Var(ji,) with high probability for large enough . Note that the variance of [i, increases at the early
stage of the algorithm, because we always start with the same [i( and it takes a certain number of Bayesian updates for /i, to become

sufficiently dispersed.

APPENDIX F: COMPARISON OF EXACT
OPTIMIZATION WITH OPTIMIZATION OF
PROXIES

In this appendix, we compare the maximization of the
variance reduction factor with the maximization of the
proxies used in Sec. IV. We start with motivating the
use of these proxies by studying the limiting behavior of
V(u,0;f,X)aso — Oorasf — Oorl.

1. Limiting behavior of the variance reduction factor

Consider the following three limiting situations: (i)
when the variance vanishes, i.e., 0> — 0; (ii) when the
fidelity is close to zero, i.e., f &~ 0; and (iii) when the

fidelity is equal to one, i.e., f = 1. We derive expressions
for the variance reduction factor in these conditions (see
Fig. 27 for a flowchart summarizing the results below).
For simplicity, we assume in this section that either (i) 0 <
f <lor(ii)f =1 and |A(u;X)| # 1. While the results
here are stated in terms of the ancilla-free bias (22), they
also hold for the ancilla-based bias (D2) (just replace A
with A).

(a) Incase (i), as 0 — 0, the expected bias (31) behaves

V(w03 f, %) =

as
b(u,0;%) = A(u;X), ED
dub(u,0;%) = A'(1;X),

F2(0ub(p, 03 7)) J 720 ( PO (p; 5)?

f=0 f=0

(Dub(p, 03 ))? g—0 ( A (u; ©)* Tl f
f72 —b(,u,a;:i’)Q L f72 —A(u,f)2 —I(}L,f,l’)

f=1 f=1

(9ub(p, 05 ©))* 1 o0 ( N

1—b(u,o;T)?

FIG. 27.

L 1 — A(p; ©)?

Flowchart showing the behavior of the expected posterior variance V (i, o;f ,x) (in the orange box) as (i) o — 0, (ii)

f &0, (iii) f = 1. For ease of notation, we use f = pp*, where p is the fidelity of each circuit layer and / captures the SPAM error.
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FIG. 28. Plots of the variance reduction factor V versus the prior mean p for L = 1 for the ancilla-free scheme. The proxies work
well when f and o are not too large (say f < 0.9 and o0 < 0.1). When f and o are both large (for example, f = 0.999 and o =
0.2), the proxies fail to be good approximations. The plots are obtained with the NMaximize RandomSearch method in Wolfram’s
MATHEMATICA with 120 search points.

which implies that the limit of the variance reduc- is the Fisher information corresponding to the noisy
tion factor as o — 0 is version of the engineered likelihood function given
by Eq. (21).

- . - - (b) In case (ii), we get
Vo(us f,x) := lim V(u, 03/ ,x) = (s f, %),
o(usf ,X) lim (u,0;f,%) (s f, %) Vuof ) ~ b o D for f ~0.
(F2) (F4)

where (c) In case (iii), we get

[3,b(i, 03]

- " = f =1.
T—bgro? o/

(F5)

fZA/(M,z)z V(M709f7}) =

(s f ,X) = RN (F3)
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L = 2 (ancilla-free)
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FIG. 29. Plots of the variance reduction factor V versus the prior mean w for L = 2 for the ancilla-free scheme. The proxies work
well when f and o are not too large (say f < 0.9 and o0 < 0.1). When f/* and o are both large (for example, /' = 0.999 and o =
0.2), the proxies fail to be good approximations. The plots are obtained with the NMaximize RandomSearch method in Wolfram’s
MATHEMATICA with 220 search points.

(d) Combining cases (i) and (ii), we get In the next part, we show how these approximations give
us good proxies for maximizing the variance reduction
- - factor.
V(03 ) ~f2N 3P for f ~ 0,020, oo
(Fo) 2. Implementing the exact variance reduction factor
optimization and comparison with proxies
(e) Combining cases (i) and (iii), we get Consider the optimization problems

input : (u,f), where u € R, f € [0,1],

A (3 %)? R )
— 7 =T(u;1,%) . P A'(p;x)
—_ .32 > output : argmax Z(u;f,X) = argmax ————=—
1 A(/,L,X) Xe(—m, w3 fce(—n,n]ﬂf 2 A(;,L;x)z

for f =1. (F7) (F8)

lim V(u,0:f,%) =
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FIG. 30. Plots of the variance reduction factor ) versus the prior mean u for L = 1 for the ancilla-based scheme. The proxies give
identical results to the exact optimization of the variance reduction factor. The plots are obtained with the NMaximize RandomSearch

method in Wolfram’s MATHEMATICA with 120 search points.

and

input : u € R,
output : argmax |A'(u;X)|. (F9)

Ye(—m,m]?L

By Eq. (F2), we expect that a solution to optimization
problem (F8) would be a good proxy for maximizing the
expected posterior variance when o is small, i.e., if X,/
is a solution to optimization problem (F8) on input (u,f ),

then we expect that

A/(M;)%/L:f)z
f72 - A(M;)%;L,f)z

when o is small.

max_ V(u,0:f %) ~

ye(—m,m?k

(F10)

Similarly, by Eq. (F6), we expect that a solution to opti-
mization problem (F9) would be a good proxy for maxi-
mizing the expected posterior variance when both /* and o
are small, i.e., if X, is a solution to optimization problem
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FIG. 31.

Plots of the variance reduction factor V versus the prior mean p for L = 2 for the ancilla-based scheme. The proxies work

well when f and o are not too large (say /' < 0.9 and o0 < 0.1). When f/* and o are both large (for example, /' = 0.999 and o =
0.2), the proxies fail to be good approximations. The plots are obtained with the NMaximize RandomSearch method in Wolfram’s

MATHEMATICA with 120 search points.

(F9) on input u, then we expect that

max
Ye(—m,m]?

Vo f X 22N (s k)

wheno and f* are small. (F11)
To investigate the performance of the proxies (F10) and
(F11), we numerically maximize the expected posterior
variance and the proxies (F8) and (F9) for small prob-
lem sizes L. The results of this optimization are presented

in Figures 28-31. For L = 1, it turns out that the opti-
mization problem (F9) for the ancilla-free bias can be
solved analytically. We present this analytical solution in
Appendix F 3.

3. Analytical expressions for an L = 1 slope proxy

In this appendix, we present an analytical solution to
optimization problem (F9) for the ancilla-free bias when
L = 1. In this case, the bias (22) can be written as the
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FIG. 32. Graph of the optimal slope, with angles 11, 12, i3, and p4 given by Eqgs. (F18)~(F21), respectively.

Fourier series Optimization problem (F9) may be stated as

maximize |A'(u;x1,x2)]
3 ] (F13)
A®:;x1,x%2) = ) jui(x1,x2) cos(16), (F12) subjectto  x1,x; € (=7, 7],
1=0
where
where AN (;x1,x) = —[cosz(xl) cos?(x2) + cos?(xy) sin’ (x,)

+ cos?(x) sin?(x2)] sin(u)

wo(x1,x2) = 2 cos(xy) sin(xy) sin(x;) cos(x2), + 4 cos(x) cos(xz) sin(xy) sin(xy) sin(2u)

w1 (x1,x2) = cos?(x1) cos?(x) + cos?(x1) sin®(x») — 3sin’(x;) sin*(x,) sin(3p). (F14)

2 )

+ cos”(x1) sin”(x2), Solving Eq. (F13) gives the following solution.

m2(x1,x2) = —2cos(x;) cos(xz) sin(x1) sin(xz),

Proposition 1. The maximum magnitude of the slope of

) -2
m3(x1,x2) = sin”(xy) sin”(x2). the L = 1 likelihood function is

J

3sin(3u), w € [0, 1] U [ua, 7],
4cos*(u/2) cot(in/2)
T+ 3c0sgn) w € (1, 12),
max A (u;x1,x)| = , T 2cosist (F15)
(x1.%2)€[0,7 2 —3sin(3u), w € [p2, 3],
4sin* (1 /2) tan(u/2)
s € (13, [44),
1 —3cos(w)
and an example of a pair of angles that achieves this maximum is
(y1,y2) € argmax |A'(u;x1,x2)], (F16)
(x1.%2)€[0,7]?

where, fori = 1,2,
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T
27

w € [0, 1] U2, u3] U [ug, ],

Vi =1 (—1Darccot[/T =3 cos(u) + sec(w)], i € (w1, 12),

arccot[\/l +3cos(u) — sec(u)],

where i1, (L2, |43, 4 are given by

=2 arctan[ L4— \/1_3)] ~ 06957,  (F18)
1> = 4arctan [/roots (p2) | & 1.1971, (F19)
13 = 4arctan [/roots (p3) | & 1.9445, (F20)
) arctan[ 44 JB] A 2.4459, (F21)

where p, and p3 are octic polynomials given by

pa(x) = 14 72x — 1540x% + 8568x°

— 16506x* + 8568x> — 1540x°® + 72x7 + x8,
(F22)

p3(x) =9 — 264x + 2492x* — 9016x> + 13302x*
—9016x° +2492x% — 264x” +9x%.  (F23)

The notation root,(p) refers to the ath smallest (with
starting index 1) real root of the polynomial p.

A plot of Eq. (F15) is shown in Fig. 32.
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