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We study SU(2)k anyon models, assessing their prospects for topological quantum computation. In
particular, we compare the Ising (k = 2) anyon and Fibonacci (k = 3) anyon models, motivated by their
potential for future realizations based on Majorana fermion quasiparticles or exotic fractional quantum
Hall states, respectively. The quantum computational performance of the different anyon models is quanti-
fied at the single-qubit level by the difference between a target unitary operator and its approximation
realized by anyon braiding. To facilitate efficient comparisons, we develop a Monte Carlo enhanced
Solovay-Kitaev quantum compiler algorithm that finds near-optimal braid words in polynomial time from
the exponentially large search tree. Since universal quantum computation cannot be achieved within the
Ising anyon model by braiding alone, we introduce an additional elementary phase gate to model a non-
topological measurement process, which restores universality of the anyon model at the cost of breaking
the full topological protection. We model conventional kinds of decoherence processes algorithmically
by introducing a controllable noise term to all nontopological gate operations. We find that, for reason-
able levels of decoherence, even the hybrid Ising anyon model retains a significant topological advantage
over a conventional, nontopological, quantum computer. Furthermore, we find that only surprisingly short
anyon braids are ever required to be compiled due to the gate noise exceeding the intrinsic error of the
braid words already for word lengths of the order of 100 elementary braids. We conclude that the future
for hybrid topological quantum computation remains promising.
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I. INTRODUCTION

Topological phases of matter have attracted a significant
amount of attention in recent times due to the diversity
of emerging physical phenomena heralded by them [1–5].
Systems with only two spatial dimensions have proven to
be particularly rich as their excitations do not adhere to
the spin-statistics theorem that conventionally divides all
particles into bosons or fermions. This theorem is one of
the great triumphs of (3+ 1)-dimensional quantum field
theory, yet its validity breaks down in lower-dimensional
systems with far reaching consequences. This was first
discovered in 1977 by Myrheim and Leinaas [6], pro-
pelling significant new activity in this field. Twenty years
later, in 1997, Kitaev conceived the idea that such exotic
phases of matter may hold the key to fault tolerant quan-
tum computation [3], frequently referred to as topological
quantum computation (TQC). Within the TQC paradigm,
error-correcting schemes are not necessary, in principle,
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as the states used for encoding information possess an
intrinsic topological protection against decoherence from
the conventional types of external noise sources [7–11].
This concept is predicated on the principle of topological
equivalence, which ensures that the configurations remain
invariant under diffeomorphisms. The quasiparticle exci-
tations in these systems are called anyons [6,7,12–15] as
they are not restricted to be bosons or fermions and instead
realize fractional statistics.

Perhaps the two most celebrated examples of anyon
models are the Ising anyon and Fibonacci anyon models.
While the Fibonacci model is computationally universal,
which means that it is capable of realizing any quan-
tum algorithm, the Ising anyon model is not. Although
anyons are elusive, it is believed that they might emerge
as quasiparticle excitations in certain specially engineered
condensed matter systems. However, current research indi-
cates that Ising anyons may be a far more accessible
platform for TQC. The Majorana fermion is an incarna-
tion of the Ising anyon, i.e., it obeys the same braiding and
fusion rules. Majorana fermion quasiparticles are expected
to be found in chiral p-wave paired Fermi superfluids
[16–19], topological superconductors [20–22], semicond-
ucting nanowires [23–26], and certain quantum Hall fluids
[27,28] in dimensions d < 3. Recently, quantized vortices

2691-3399/21/2(1)/010334(23) 010334-1 Published by the American Physical Society

https://orcid.org/0000-0003-4064-3177
https://orcid.org/0000-0003-0730-9126
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.2.010334&domain=pdf&date_stamp=2021-08-06
http://dx.doi.org/10.1103/PRXQuantum.2.010334
https://creativecommons.org/licenses/by/4.0/


EMIL GÉNETAY JOHANSEN and TAPIO SIMULA PRX QUANTUM 2, 010334 (2021)

[29] have been used for dressing full-shell nanowires [30],
combining proximitized-wire and pure vortex schemes as
a pathway to realizing Majorana zero modes. Fibonacci
anyons, on the other hand, might be out of reach for the
time being, although it is thought that they could exist in
some very exotic fractional quantum Hall fluids with filling
fraction ν = 12/5 [31–33] and as quasiparticles in Kondo
systems [34].

In a topological quantum computer the quantum gates
are realized by enacting certain transformations on the
anyons that in a braid-based TQC will be implemented in
the hardware by braiding the anyon world lines [10]. More
recently, measurement-based topological quantum compu-
tation protocols [35,36] that avoid the need of having to
move the anyons in physical space by using anyonic quan-
tum state teleportation to enact the effective braiding trans-
formations via forced measurements of the topological
charge of the anyons have been rapidly advancing [37–39].
Irrespective of the hardware-level implementation details,
before any quantum computations can be performed, one
must find a mapping between the desired quantum gates
and their corresponding braids (or measurement protocols)
that must be realized on the anyon hardware. This is the
quantum compilation problem. A generic quantum compi-
lation is notoriously hard, which is why various techniques
have been developed in order to compile gates with good
accuracy. Some methods include hash function techniques
[40], algebraic techniques [41,42], and machine learning
[43]. The method developed in Ref. [41] is a number
theoretic approach in which the ring structure of the set
generated by the elementary gates is identified, and from
that an approximation to a given target gate is constructed.
This method is very powerful but not generic in the sense
that it would work for any gate set, since it relies on the
structure of the generator set. The algorithm discussed
in Ref. [42] is known as the Solovay-Kitaev algorithm
(SKA). Contrary to the number theoretic technique due to
Kliuchnikov, the Solovay-Kitaev compiler is completely
generic although less efficient. A brief review on a range
of quantum compilation approaches beyond the brute force
method can be found in Ref. [8].

In this paper we develop a Monte Carlo enhanced
Solovay-Kitaev algorithm (MCESKA), which inherits its
generic structure from the SKA. It is straightforward to
modify the MCESKA to implement a variety of con-
straints such as limiting the number of noisy conven-
tional gates employed in nonuniversal models, which in
turn opens up the possibility of finding a better trade-
off between logical compilation error and error due to
noise in nontopological gates. From a practical perspec-
tive, this is a highly valuable feature in systems where
hardware resources are scarce and limited by decoherence.
We return to the details of the SKA and the MCESKA in
Sec. II B, after a more general discussion on the underlying
Monte Carlo techniques. In particular, we demonstrate a

clear advantage of using the MCESKA, when compared
to the original SKA. Recently, in Ref. [43] a reinforce-
ment learning technique was deployed in the context of
the quantum compilation problem, which appears to have
a similar braid word length versus error performance as
the MCESKA. Since it is also fully generic, it will be
interesting to see if it too allows accommodating extra
functionality such as suppressing the fraction of noisy
gates required in hybrid TQC implementations. In Sec. III,
we use the MCESKA for assessing the prospects of various
SU(2)k anyon models with a particular emphasis on the
Ising anyon (k = 2) and Fibonacci anyon (k = 3) models
for TQC, including the k = 4, 5, 6, 8 models to provide a
basis for more general comparison. The Ising anyon model
(k = 2) and the k = 4 model are not computationally uni-
versal, which is why we have supplemented their natural
set of braid generators with an additional nontopological
gate that is prone to cause errors due to the influence of
noise. Braid compilation for nonabelian anyons has pre-
viously been considered in Refs. [44,45] for single- and
double-qubit systems. The compilation was carried out for
specific gates and no noise was considered since the fully
topologically protected Fibonacci model was used. In our
work, we compile braids for arbitrary unitary gates and
the computational performance of the various anyon mod-
els is compared for varying levels of noise. We conclude
this work in Sec. IV with a summary and discussion. For
the sake of completeness, in Appendix A we provide a
brief theoretical background to anyons and TQC and in
Appendix B some rudiments of the SU(2)k anyon models
are outlined.

II. QUANTUM COMPILATION

When a circuit model of computation is carried out
in a quantum computer, the state of the system is acted
upon by a series of logic gates. These logical operations
are induced by physical processes in the system. In order
to realize a particular logic gate, we need to know what
action it corresponds to in the physical hardware. In TQC,
these transformations are realized by braiding the anyons
in a very particular way, which raises the question how to
deduce what braids should be performed in order to realize
the desired computation. A whole research area centered
around this problem, known as quantum compiling, exists
within the field of quantum computation. The key objec-
tive of quantum compiling is to develop an algorithm that,
given a target unitary gate, will search for sequences of
braid operations that are approximating this gate to the
desired accuracy.

Because of the combinatorial nature of the problem, we
may represent the search space as a tree structure. In partic-
ular, if we consider the braid group on three strands, since
there are four generators in the group, this tree is a 4-ary
tree shown in Fig. 1. Considering this graphical structure,
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FIG. 1. The search space with node labels. The particular path
in green corresponds to the braid word S = Iσ−1

2 σ1 · · · σ−1
1 σ2.

The braid generators σi are defined explicitly in Appendix B 4.

the exponential growth of the number of leaf nodes with
the length of the braid word (height h of the tree) becomes
evident. More precisely, given a tree height h, there are a
total of 4h leaf nodes. Let us now consider the tree in the
context of quantum compilation.

The goal is to find a sequence of elementary braids S ,
such that the distance d = ‖S − T ‖ to the target unitary
matrix T is less than ε, where ε is the desired error tol-
erance. More specifically, in order to compare the various
compiler algorithms as well as anyon models, we need to
establish a notion of metric in the space of unitary gates.
When a unitary matrix U is approaching a unitary target
matrix U0, the product U0U† approaches identity such that
the error distance d goes to 0. Hence, the trace of this prod-
uct is a number that approaches n, where n is the dimension
of the matrix. This motivates the definition of the fidelity
measure in the space of 2× 2 unitary matrices [8,41]

d(U0, U) =
√

1− |Tr(U0U†)|
2

. (1)

This function has global phase invariance, i.e., the value of
the function for a given target matrix U0 is the same for all
matrices U that are equal up to a global phase change. It is
also strictly positive, symmetric [i.e., d(V, W) = d(W, V)],
and satisfies the triangle inequality d(V, W) ≤ d(V, U)+
d(U, W). Each sequence of braids corresponds to a unique
path in the search tree, so instead of regarding the problem
purely as a constrained optimization problem, we are inter-
ested in finding the path to a specific leaf node in the tree,
such as the path highlighted in green in Fig. 1. Note that,
for an arbitrary N -ary tree, given a level l, there are a total
of N l leaf nodes. Hence, we may express the total number
of nodes in the tree as a geometric sum

1+ N + N 2 + · · · + N h =
h∑

l=0

N l = N h+1 − 1
N − 1

. (2)

Clearly, finding the one leaf node that leads to the small-
est error distance d is an inherently exponentially complex

problem, which would demand an enormous amount of
computational resources. Although performing an exhaus-
tive search is the only known method for finding the unique
path to a specific leaf node, good alternative approaches
exist. It is possible to reduce the vast size of the search
space by considering the algebraic properties of the braid
generators and the intrabraid symmetries [8]. Finding
redundancies in the search space allows pruning whole
branches from the tree.

In Fig. 2 we illustrate the compilation problem on
the Bloch sphere using Fibonacci anyons. The exact
Hadamard gate takes the initial state (green arrow) to a
superposition state (brown arrow). The blue and red arrows
are the optimal state approximations reached by braid-
ing the anyons 10 and 15 times, respectively. Although
increasing the length of the braid word takes the final
state smoothly ever closer to the target state, the inter-
mediate, intrabraid, states (colored markers) are seemingly
randomly scattered on the Bloch sphere, meaning that it
is not possible to determine the best braid letters locally
within the braid word by conventional optimization means.
Specifically, adding just a single letter to the end of a braid
word may result in all of the letters changing.

FIG. 2. Fibonacci anyon braid word approximations for the
Hadamard gate. The initial state |0〉 is shown by the green arrow
on the Bloch sphere. The exact final state (brown arrow) is
shown together with the optimal (obtained via brute force search)
braid word approximations of lengths 10 (blue) and 15 (red).
The intermediate states for the latter case are shown by num-
bered markers that indicate the order of the letters in the braid
word sequence. Only 14 of the 15 intermediate states are vis-
ible because the first two braid letters only apply a phase to
the initial state. The braid word used in this demonstration is
σ−1

1 σ2σ
−1
1 σ2σ

−1
1 σ−1

1 σ−1
2 σ1σ1σ

−1
2 σ1σ

−1
2 σ−1

2 σ−1
1 σ−1

1 .
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A. A Monte Carlo approach

Let us consider the 4-ary tree shown in Fig. 1. Each path
in the tree corresponds to a particular braid word. Let �
denote the set of generators and |�| the order of that set.
This implies that, for a simple random walk, under the con-
dition that the tree is directed, the probability of moving
from a parent node n0 to a specific child node ni, where i
is running from 1 to |�| + 1 (number of child nodes plus
one parent node), is

P(n0 → ni) =
⎧⎨
⎩

1
|�| if ni = child node,

0 if ni = parent node.
(3)

With this particular definition we are only considering
directed trees as the probability of going backwards is 0.
We would then like to find the path from the root I to some
node n at level l. Thus, if we simulate a simple random
walk according to the probability distribution defined in
Eq. (3), the probability of finding this node is

P(I → n) = 1
|�|

1
|�| · · ·

1
|�|︸ ︷︷ ︸

l times

= 1
|�|l . (4)

In this model, no move is more favorable than any other,
which is obviously a quite simplistic assumption. A better
model would be to condition the probability distribution
with respect to the present state. Mathematically, we can
formulate this as a Markov chain from node ni to node nj
with corresponding states si and sj :

P(ni → nj ) = P(ak|sj−1)P(sj−1)

= P(ak|sj−1)P(aq|sj−2)P(sj−2)

= P(ak|sj−1)P(aq|sj−2)P(ap |sj−3) · · ·P(s0).
(5)

Here we have used the Bayesian property P(A) =
P(A|B)P(B). The probabilities P(ai|sj ) can be interpreted
as the probability of taking action ai, given the present
state sj . The remaining problem is how to best model these
conditional probabilities.

1. Mapping the problem onto a ZN spin chain

The core idea of our approach is that the problem of
finding the right path in the tree can be mapped onto a one-
dimensional spin chain for which we are searching for the
ground state (see Fig. 3). First, let us assign to each gen-
erator in the set � a spin. Here we consider a set of four
generators � = {σ1, σ2, σ−1

2 , σ−1
1 }, which generate the tree

σ−1
2 σ−1

1
σ1 σ2σ−1

1
σ2

(a)

(b)

FIG. 3. Mapping between a braid word (a) and a spin
chain (b).

in Fig. 1. We define the following map f : �→ Z4:

f (σ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

↑ if σ = σ1,
↓ if σ = σ−1

1 ,
→ if σ = σ2,
← if σ = σ−1

2 .

(6)

Thus, for a generic anyon model with |�| generators, we
can map this problem onto a Z|�| lattice model.

2. A thermodynamic picture

Our ultimate goal is to find a path S corresponding to a
braid word that, given a metric, minimizes the distance d
to the target unitary gate U0. We may establish the equiv-
alence d↔ E in the spin chain representation, where E
is the energy of the system. Thus, we implicitly define a
Hamiltonian H of our spin chain via E = 〈H 〉. Instead of
trying to find the smallest error we are interested in find-
ing the state vector corresponding to the known ground
state energy of the system. In comparison to the stan-
dard Ising lattice model, our implicitly defined spin chain
Hamiltonian will most likely exhibit other symmetries.
The twofold degeneracy of the ground state in the Ising
spin model is illustrated in Fig. 4(a) and can be viewed
as a two-dimensional version of a Mexican hat function,
which is invariant only under the Z2 subgroup of the full
U(1) symmetry. In our scenario the function will look more
like a wrinkled Mexican hat function, Fig. 4(b), which
exhibits various discrete symmetries corresponding to a
number of local minima. Therefore, in the thermodynamic
picture, the error convergence process may be regarded
as a series of successive symmetry breaking processes,
gradually bringing the system to lower and lower energies.

Ideally, we would like to deduce all of the symmetries
as that would allow us to reduce the information entropy,
but since these symmetries depend explicitly on the tar-
get matrix, it is difficult to derive any generally applicable
results. This is where the Monte Carlo approach is useful.
From the thermodynamic perspective, we would ideally
like to find the global minimum of the system, or at least
a local minimum that lies close to the global one. There-
fore, when the system gets trapped in a local minimum, we
need to be able to repeatedly climb over barriers and roll
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FIG. 4. Schematic of the twofold ground state degeneracy of
the Ising anyon model (a) and a “wrinkled” Mexican hat poten-
tial (b) with several discrete symmetries corresponding to various
minima (one highlighted with an orange marker) instead of the
full U(1) symmetry.

down toward lower energy local minima, until the global
one is found. This leads to the question of how to assign
probabilities to the various minima. In a similar way as for
a gas of molecules, we want to maximize the number of
statistically equivalent microstates, which happens when
the entropy takes its maximum value. Therefore, we intro-
duce a notion of entropy in the system. If we denote by pi
the probability of finding a minimum i, the entropy can be
expressed as

S = −α
n∑

i=0

pi ln(pi), (7)

where α is a constant. The maximum occurs when
dS/dpi = 0, and upon imposing stationarity, d(〈Ei〉) =
d(

∑n
i=0 piEi) = 0, yields the stationary distribution

pi ∼ e−Ei/Tα , (8)

where we have introduced a dimensionless temperature
parameter Tα ∝ α to retain the connection to thermody-
namics and the energy Ei is associated with the error
distance defined in Eq. (1).

3. A Monte Carlo algorithm

Inspired by the Ising spin model, we assign the event of
a spin flip, such as ↑ flips to ↓, a probability

p(↑ to ↓) = e−(E↑−E↓)/Tα , (9)

where E↑ > E↓. In this particular case, we are dealing with
four generators and thus four different possible actions, that
is, either stay in the initial state or flip the spin to any of
the other three states. To enhance the convergence rate of
the algorithm, we let Tα vary as a function of the energy
difference E↑ − E↓ such that Tα = ord(E↑ − E↓), where
ord(x) refers to the order of magnitude of x. Note that
this parameter can be further calibrated to achieve even

better convergence. The Monte Carlo game proceeds via
an iterative sequence of attempted and accepted spin flips
executed according to the following specific rules.

(i) The process is initiated by performing a simple ran-
dom walk in the tree according to the probability of Eq.
(3), to generate an initial spin configuration (braid word),
and then moving to the first site (letter). If we assume
that the final low-error configuration is an approximately
even mixture of different elementary braids, a randomly
generated initial configuration should be a good starting
point.

(ii) A new state of the spin is chosen randomly and if
the new state of the system after an attempted flip corre-
sponds to a lower energy, that is, Eflip < Einitial, the flip is
accepted and the process moves on to the next adjacent
site (letter), towards the leaf node. If the energy of the new
attempted state is greater then the flip is accepted only with
a probability p defined in Eq. (9). If the flip is not accepted
then another attempt is made at the same site. This proce-
dure is repeated until a flip is either accepted or all possible
flips have been attempted once, after which the algorithm
proceeds to the next site.

(iii) Once the end of the chain (a leaf node) is reached,
return to the first lattice site (the root node) and continue
the iteration until the desired error tolerance is reached.

This basic Monte Carlo method could likely be further
optimized by incorporating enhancements such as the
worm algorithm [46,47] and other stochastic Hamiltonian
approaches [48–50].

4. Performance of the Monte Carlo algorithm

The exhaustive search of braid words is always guaran-
teed to yield the minimum achievable error between the
target unitary and its finite-length braid word approxima-
tion. It therefore provides a convenient absolute reference
for testing the performance of other algorithms. A com-
parison of the average time taken by a digital computer
to find the best possible braid word approximation using
an exhaustive search and a Monte Carlo method is pre-
sented in Fig. 5 for a range of braid word lengths within
the Fibonacci anyon model. As expected, the search time
grows exponentially with the length of the braid word for
the exhaustive search method, which simply reflects the
structure of the search space. In contrast, the Monte Carlo
algorithm clearly outperforms the exhaustive search for
braid word lengths exceeding 10.

To understand the convergence properties of the Monte
Carlo algorithm, in Fig. 6 we show the achieved abso-
lute error as a function of CPU time for three distinct
randomly generated unitary target gates and a braid word
length of 50. Occasionally, the algorithm gets stuck in a
local minimum corresponding to the plateaus in the figure,
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FIG. 5. Search time (CPU) as a function of the braid word
length for the exhaustive search method (yellow) and the Monte
Carlo algorithm (turquoise). The errors bars represent the stan-
dard deviation of the Monte Carlo sample. The braid words are
constructed using the braid generators of the Fibonacci anyon
model.

but eventually “tunneling” over the barrier is achieved and
the convergence proceeds toward another local minimum.
An inherent inbuilt feature of the Monte Carlo algorithm
is that it efficiently distills out hidden identities and other
inefficiencies from the braid words, as can be verified by
explicitly monitoring the braid words during the compi-
lation. The Monte Carlo algorithm is particularly useful
when compiling braids for computationally nonuniversal
models such as the Ising anyon model that require at least
one additional elementary gate to be added to the generator
set in order to make the model computationally universal.
This means that the search space grows as 5l instead of
4l, which makes it even more challenging to perform an
exhaustive search. More importantly, the additional gate is
not topologically protected and is thus susceptible to ordi-
nary forms of decoherence. It is therefore of great interest
to reduce the total number of such nontopological gates
required to approximate a predetermined target unitary. As
shown in Sec. III C, it is straightforward to implement this
within the Monte Carlo algorithm by introducing a phase-
gate acceptance probability. If we define the probability
such that the probability is decreasing with the number
of phase gates already accepted, it is possible to reduce
the phase-gate count significantly and thus suppress the
susceptibility of the computation to conventional forms of
decoherence.

B. The Solovay-Kitaev algorithm

The SKA can be viewed as an algorithmic implemen-
tation of the shrinking lemma that leads to the Solovay-
Kitaev theorem. The algorithm plays a significant role in
quantum computation as it guarantees that any arbitrary
quantum gate can be implemented with arbitrary precision
if the gate set at hand is universal.

Time (s)

d(
U

,U
0)

FIG. 6. The absolute error d as a function of the CPU search
time for a Monte Carlo search of a braid word approximation
to three randomly chosen unitary matrices. The braid words
of length 50 are constructed using the braid generators of the
Fibonacci anyon model. Each step change in the graph corre-
sponds to a spin flip in the braid word.

1. The Shrinking lemma and the Solovay-Kitaev theorem

For the sake of completeness, we present the shrink-
ing lemma here followed by the Solovay-Kitaev theorem,
which pertains to the mathematical underpinnings of the
SKA [42].

Lemma 1 (The Shrinking Lemma). Let G be a set of gen-
erators forming a space endowed with a metric d(X , Y),
let Sε = {U ∈ SU(2) | d(U, I) < ε}, and let Gl be the sub-
space of braid words of length l. Furthermore, if we let
ε0 be a constant such that we can find a g ∈ Gl satisfying
d(g, s) < ε2 for any s ∈ Sε and ε < ε0, then we are guar-
anteed to find a g′ ∈ G5l such that d(g′, s′) < Cε3 for all
s′ ∈ S√Cε3 and some constant C.

This statement constitutes the basis upon which the
Solovay-Kitaev algorithm is founded. In simple terms, the
shrinking lemma states that, by recursively expanding the
length of the braid word, it is possible to get closer and
closer to the target gate.

In order to be able to realize any arbitrary gate, the anyon
model must be universal. In terms of the Bloch sphere rep-
resentation, this implies that it is always possible to find
a combination of generators such that their joint action on
the state vector maps the initial point on the sphere arbitrar-
ily close to any other point. Algebraically, this entails that
SU(2) must be entirely contained in the set, or that each
point in SU(2) has a limit point in the set that is arbitrarily
close to that point, given that the space is endowed with a
metric. It is thus stated that the set is topologically dense in
SU(2) or that the set provides a dense cover for SU(2). The
Solovay-Kitaev theorem formalizes this statement more
concisely.
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Theorem 1 (The Solovay-Kitaev Theorem). Let G be a
set of generators forming a space endowed with a met-
ric d(X , Y). For any accuracy ε > 0, there is a constant
c and a sequence of generators S of length O[logc(1/ε)]
such that the distance to a given target matrix U satisfies
d(S, U) < ε if the set is dense in SU(2).

For a more detailed analysis of the algebraic treatment,
see, e.g., Refs. [12,42,51]. The Solovay-Kitaev theorem
has important implications to quantum computation as it
ensures that universal quantum computation is indeed pos-
sible, at least in theory. It was later shown that the bound
on the braid word length to error ratio could be improved,
leading to a plethora of new adaptations. However, the
improvements discussed in the literature are nongeneric,
that is, they only hold for specific generator sets [52–57].

2. Implementation of the Solovay-Kitaev algorithm

The key step in the Solovay-Kitaev algorithm, and also
in the proof of the shrinking lemma, is to perform a group
commutator decomposition (GCD) of the quantity � =
UU†

0, into the new elements V and W, such that GCD(�) =
ṼW̃Ṽ†W̃†, with U being the approximation and U0 the tar-
get gate. Then, by finding approximations to the factors in
the decomposition, their product yields a better approxima-
tion of � than could be obtained by searching for approx-
imations of � directly. This fact can be derived from the
shrinking lemma. If U is an approximation to U0, we have
� ∈ Sε for some ε, to which we can find an approxima-
tion U′ ∈ Gl with d(U′,�) < ε2. The lemma thus promises
that another braid word U′′ ∈ G5l with d(U′′,�′) < Cε3 for
some �′ ∈ S√Cε3 can be found. Consequently, by sequen-
tial applications, increasingly good approximations can
be obtained. When the decomposition is performed, the
function calls upon itself recursively with the factors in
the decomposition as inputs, and these input matrices are
further decomposed to achieve even higher accuracies.

Since U = VWV†W†U0, and each one of the factors in
the decomposition is of length l0, the total length of a braid
word that is a level-n approximation is given by ln = l05n.
The implementation of Algorithm 1 is due to Dawson and
Nielsen [42].

C. Monte Carlo enhanced Solovay-Kitaev algorithm

The development of the Solovay-Kitaev algorithm was
a major step forward in the field of quantum compiling.
Nevertheless, it has a few downsides. Probably the most
severe is the exponential growth of the braid word length
as a function of the level n of the approximation, which
due to the group commutator decomposition grows as

ln = l05n, (10)

where l0 is the braid word length of the zeroth-order
approximation. In order to reach high accuracies, one has
to go to great depths (large n) in the algorithm and this
results in very long braid words. For instance, to reach an
accuracy of ε ∼ 10−4 with a base length l0 = 10, depth
n = 5 may be needed, which means that the length of the
resulting braid word is l5 = 10× 55 = 31 250, which is
unnecessarily long for an error of that magnitude (even
though according to the threshold theorem errors below
1% are acceptable in order to perform quantum compu-
tation fault tolerantly [58–64]). Another downside is the
required computation time. Considering the pseudocode of
the previous subsection, we conclude that the algorithm
makes three recursive calls per level. This implies that
the simulation time increases by a factor of 3 per level
according to

tn = t03n, (11)

where t0 is the time it takes to perform the exhaustive
search.

To summarize, while the SKA promises unconstrained
accuracy, the accuracy realized for a given braid word
length is highly suboptimal. With an ideal algorithm, it
should be possible to find braid words of this accuracy
that are only a fraction of the length. Moreover, the expo-
nential growth in simulation time makes the process very
slow. The simplest way to improve the efficiency of the
algorithm is to find a method that enables surpassing
the limits of the exhaustive search method. That is, find-
ing better approximations for shorter braid words, in a
shorter time. This motivates our introducing the Monte
Carlo enhanced Solovay-Kitaev algorithm. By implement-
ing the Monte Carlo method instead of an exhaustive
search at the zeroth depth in the Solovay-Kitaev algorithm,
it should be possible to enhance the compiler perfor-
mance significantly. The implementation of this enhance-
ment is very simple. The exhaustive search method at
depth n = 0 in Algorithm 1 is simply substituted with
the Monte Carlo search, that is, the line braid word =
exhaustive search(U) in the algorithm is simply replaced
by the line braid word = Monte Carlo search(U).
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The graphs presented in Figs. 5 and 6 verify that the
Monte Carlo algorithm is indeed significantly faster than
the exhaustive search method. While the exhaustive search
method is exponential in time, the Monte Carlo one is lin-
ear (at least for moderately long braid words), and since it
can be easily applied beyond the small search spaces that
the brute force method is limited by, it is also possible to
find much better zeroth depth, n = 0, approximations.

In addition to the search time, the search space (n-
ary tree) also has to be constructed before performing an
exhaustive search. This is an inherently exponential prob-
lem in itself as the search space grows as mh, where m is
the number of child nodes per node and h is the height
of the tree. Thus, we may conclude that the advantages
of the Monte Carlo–based MCESKA over the exhaustive
search–based SKA are twofold: (i) it enables better zeroth-
level approximations, and (ii) not only is it searching more
efficiently, but also no preparatory work is required prior
to the initiation of the search process. Note, however, that
the recursive part of the MCESKA is still exponential and
that it is the search time t0 that is significantly improved
upon by the Monte Carlo implementation, as it grows
exponentially with the braid word length for exhaustive
search. Additionally, it is possible to suppress the phase-
gate count in the nonuniversal models by introducing a
phase-gate acceptance probability to the Monte Carlo part
of the MCESKA, which makes it particularly powerful
for compiling hybrid anyon models. More general con-
straints on the desired braid words are also straightforward
to implement within the MCESKA.

D. Comparison of compiler algorithms

In Fig. 7 we summarize our quantum compiler bench-
mark results obtained for the conventional Solovay-Kitaev
algorithm and our Monte Carlo enhanced Solovay-Kitaev
algorithm using the braid generators of the Fibonacci
anyon model. We have used l0 = 10 and l0 = 15 as base
lengths for the SKA and l0 = 30 and l0 = 50 for the
MCESKA. The dashed orange line is an extrapolation
based on the brute force method data points (red, green,
and cyan). This is a useful benchmark for how well
our algorithm performs compared to a hypothetical ideal
algorithm that would find the best approximation for any
braid word length. In particular, the pure Monte Carlo
method for l0 = 50 achieves practically equivalent preci-
sion as an estimated brute force method would. The shaded
regions correspond to the braid word length intervals for
which the specified algorithm is recommended to be used
for optimal results.

These recommendations are based on the following
observations. The brute force search allows finding the
optimal braid word for any given length, but since it is
not feasible in practice to search whole trees for braid
words longer than around 20, we recommend brute force

Braid word length

d(
U

,U
0)

FIG. 7. Comparison of the performance of the conventional
Solovay-Kitaev quantum compiler algorithm (SKA) with our
Monte Carlo enhanced version (MCESKA). The dashed orange
line has a slope of −0.001 727 5 and is an extrapolation based on
the three data points l0 = 10, 15, 20 obtained with the brute force
(BF) method and should be viewed as an estimation of the lowest
theoretically attainable error for a given braid word length. The
results are obtained using the Fibonacci anyon model.

search for braid words shorter than this. The Monte Carlo
method can still be used to search efficiently for lengths
much greater than 20 but has an upper limit for lengths
of magnitude 102. If l0 = 50 is used as the base length
(in our experience this seems to be a good length to opti-
mize the benefits of the Monte Carlo method), one reaches
l1 = l051 = 50× 5 = 250 after one iteration, which we
can take as an upper bound of the Monte Carlo part as any
length greater than that is obtained by iterating with the
Solovay-Kitaev part of the algorithm.

The results in Fig. 7 confirm our conjecture. Invok-
ing the Monte Carlo method at the zeroth depth brings
substantial benefits. Note that these results are obtained
for particular parameter values in the algorithm, which
could be further optimized. For instance, if one succeeds in
improving the calibration of the temperature parameter in
Eq. (9), a higher convergence rate could be achieved. Also,
if we allow for a longer simulation time, the algorithm will
be able to settle into a lower local minimum. With this par-
ticular set of parameter values we see that the blue curve
(l0 = 50) reaches an error 2 orders of magnitude lower than
the green curve (l0 = 15), after only three MCESKA recur-
sions. Nevertheless, the braid word length corresponding
to this error is still roughly one order of magnitude greater
than the estimated ideal length obtained from the brute
force extrapolation (the dashed orange line). Also, note
that these improvements are obtained despite the longer
zeroth-order braid word length. For l0 = 50, we reach an
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average just below 10−3, while for the l0 = 15, we only
reach an average of about 0.03. This gives the l0 = 50 a
head start and skip over the slow convergence rate in the
high error region, resulting in a much greater efficiency as
high values of n are not required.

III. NUMERICAL EXPERIMENTS

A. Fibonacci versus Ising anyon models

Here we present MCESKA compilation results for the
Fibonacci and Ising anyon models. As mentioned previ-
ously, the Fibonacci model is capable of universal quantum
computation by only braiding the anyons, whereas the
Ising anyon model must be supplemented with an addi-
tional unitary operator such as a suitably chosen phase
gate. It is thus natural to ask how to choose such an
auxiliary gate.

Recall that universality implies that we must be able to
arrive arbitrarily close to any point on the Bloch sphere just
by combining the generators. In R

2, by picking any two
vectors v̄, w̄ such that v̄ × w̄ �= 0, and parameters a, b ∈
R, we may construct a linear combination (av̄, bw̄) that
reaches any point in the plane. Similarly, on the sphere,
by choosing a phase gate Rθ such that it is possible to
construct at least two continuous and nonparallel rota-
tions, we should be able to cover the whole sphere. One
way to achieve this is to select a phase that generates a
dense set in S1, since then we can combine this phase
with the other generators to form multiple “nonparallel”
dense circles that serve as a basis on the sphere. Mathemat-
ically, we thus need to select a phase of infinite order, i.e.,
φn �= I for all n ∈ Z \ {0}, and find at least two sequences
s1, s2 containing the corresponding phase gate Rθ [defined
in Eq. (12)] such that [s1, s2] �= 0. By considering the
unit circle in the complex plane, the two phases einx2π

and eimy2π , where m, n ∈ Z, can never be equal if we let
x, y ∈ R \Q (the irrationals), since no such number can be
expressed as a fraction, which further implies that einx2π �=
eimy2π for all n �= m. Hence, we arrive at the following
propositions.

Proposition 1. Let φ = eixπ be a phase on the complex
unit circle with corresponding phase gate Rxπ . Then the
set generated by φn, where n ∈ Z, will form a topologically
dense cover in S1 (in the complex plane) if x ∈ R \Q.

Proposition 2. Let � be a set of generators that does
not form a topologically dense cover in SU(2). Then, by
adding an irrational phase gate Rθ , it will become dense
if at least two sequences s1 and s2, containing φ, can be
found such that [s1, s2] �= 0.

Having established that any irrational phase can be used
to supplement a nonuniversal anyon model, we only need
to find two sequences containing this phase that do not

commute, in order to form a basis on the Bloch sphere.
This is easily achieved since braid generators do not com-
mute in general. For instance, σ1φ will generate a dense
circle around one axis and σ2φ around another one since
[σ1φ, σ2φ] �= 0. Thus, we may conclude that universality
can be achieved in the Ising anyon model by adding an
irrational phase gate to the set of generators. An in-depth
analysis of the conditions for universality can be found in
Ref. [65] and physical implementations of phase gates are
discussed in Ref. [66].

In our numerical experiments, we generate a large num-
ber of random unitary matrices as target gates that are then
compiled using the different anyon models and for a range
of braid word lengths. The braid generators for a generic
level k anyon model considered are constructed using Eqs.
(B13)–(B17).

In Fig. 8 we show a comparison between the universal
Fibonacci anyon model and the hybrid Ising anyon model
for which a phase gate

Rθ =
(

1 0
0 eiθ

)
(12)

with a phase angle θ = √2π is used to achieve univer-
sality. Although it is also possible to achieve universality
in the Ising anyon model with a phase gate with ratio-
nal phase angle, such as θ = π/4, we have chosen to
deploy an irrational phase angle to facilitate fair com-
parison between the two nonuniversal, k = 2 and k = 4,
anyon models, which would otherwise not be possible. The
data points in Fig. 8 are an average over the sample with
one thousand data points and the error bars represent the
corresponding standard deviation. This numerical experi-
ment confirms our conjecture that the Ising anyon model
becomes computationally universal when enhanced with
an irrational phase. The average performance of this hybrid
Ising anyon model generally seems slightly better than the
Fibonacci model but, since the error bars are overlapping,
from a statistical point of view, their performance should
be considered to be equal. However, since the additional
phase gate cannot be implemented in a topologically pro-
tected manner, the hybrid Ising anyon model is not immune
to decoherence, which means that, from a practical point
of view, the Fibonacci model will always outperform the
hybrid Ising anyon model in the presence of environmen-
tal noise, as discussed in detail in Sec. III D. Furthermore,
if the Ising anyon model is complemented with an aux-
iliary gate with rational-valued phase angle, the observed
difference between the hybrid Ising anyon model and the
Fibonacci anyon models is effectively removed.

B. The k = 4, 5, 6, 8 anyon models

To provide a broader perspective, we extend our analysis
of the k = 2 Ising and k = 3 Fibonacci anyon models to the
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FIG. 8. Compilation errors as a function of the braid word
length evaluated for the Fibonacci and hybrid Ising anyon mod-
els. In total about 20% of R√2π phase gates are deployed in the
Ising braid words. Each data point comprises 103 realizations
with a corresponding statistical error estimate shown.

k = 4, 5, 6, 8 anyon models. In light of Theorems 2 and 3 in
Sec. III B, we conclude that, similar to the k = 2 case, the
k = 4 model is nonuniversal and needs to be supplemented
with a generator having an irrational phase. We use the
fusion product (k − 1)/2⊗ (k − 1)/2 = 0⊕ 1 as the qubit
for these numerical experiments.

The results of these calculations are summarized in
Fig. 9(a), which shows that the data (averaged over 103

realizations) corresponding to k = 2, 3, 4, 5, 8 are all within
one standard deviation from one another. The only one that
lies consistently above the others is the k = 6 model. This
indicates that the group generated by the k = 6 braid gen-
erators may cover the SU(2) at a slower rate than the other
models, yielding a slower convergence rate. In order to
understand this observation, we construct a heuristic argu-
ment based on the structure of the corresponding braid
group. We project the rotations onto the complex plane to
analyze the cyclicity of the group generators. Letting �σi,k
denote the subgroup generated by σi for a given k, we may
define an isomorphism

f : �σi,k → �′σi,k (13)

such that f (σ q
i σ

p
j ) = f (σ q

i )f (σ
p
j ) for any q, p ∈ Z, where

the image forms a group that is identical in terms of rota-
tions but the axis is aligned with the axis of the group we
are comparing with. In fact, �σi,k and �′σi,k

belong to the
same equivalence class. Since the generators σ1 and σ2 in

a given SU(2)k model are always 2(k + 2) cycles, we can
deduce the size of the intersection between two subgroups
�′σi,k

and �σi,k′ (where �′σi,k
is the image of f such that

the axes are aligned), generated by σi. Let us start with the
case in which k, k′ ∈ 2Z (even) and let k′ > k. Then the fol-
lowing statement holds when projected onto the complex
plane:

�′σi,k ∩�σi,k′ =
{
�′σi,k if k + 2|k′ + 2,
{0, eiπ/2, eiπ , ei3π/2} otherwise.

(14)

From this we deduce that �′k is completely contained in
�k′ if k′ + 2 is divisible by k + 2, whereas if this condition
is not satisfied, the intersection will form a smaller group
corresponding to π/2 rotations. Letting k ∈ 2Z− 1 (odd)
and k′ ∈ 2Z (even), the intersection is given by

�′σi,k ∩�σi,k′ =
{
�′σi,k if k + 2|k′ + 2,
{0, eiπ } otherwise.

(15)

That is, the odd k subgroup is completely contained in the
even one if k′ + 2 is divisible by k + 2, and if not, the
intersection is constituted by the group corresponding to
π rotations. However, the reverse is never true, where the
even k group would be completely contained in the odd k
group since all even k groups contain a π/2 and a 3π/2
rotation, while odd k groups never do.

We now apply this analysis to our particular case by
comparing the k = 6 group with the others. As depicted
in Fig. 9(b), this group is a 16 cycle at the generator level
and, for all k = 3, 4, 5, we have k′ + 2 � k + 2, i.e., a 16
cycle is not divisible by the 10, 12, 14 cycles (k = 3, 4, 5).
However, the generators in the k = 2 are 8 cycles and
8 | 16, so all rotations in the k = 2 group are being faith-
fully represented by elements in the k = 6 braid group.
Or, equivalently, the structure of the k = 2 braid group is
entirely encoded in the k = 6 group, which is not true for
k = 3, 4, 5. Hence, there is no a priori reason to expect the
k = 6 model to perform better than the k = 3, 5 models,
since the k = 2 model is nonuniversal. We can only state
for certain that the k = 6 model is better than the k = 2
model, but since the k = 2 model is not universal, the gap
in performance between this model and the k = 3, 5 mod-
els is enormous, which is why it is not obvious that the
k = 6 model should exceed the k = 3, 5 cases in perfor-
mance. In fact, the k = 6 model is the first even k model
that is universal. Moreover, if we apply the same analysis
to k = 8, we find that k + 2 |k′ + 2 only if we let k′ = 3.
This means that the Fibonacci braid group is isomorphic
[according to f defined in Eq. (13)] to a subgroup of the
braid group labeled by k = 8. So in this case it should hold
that the k = 8 model is at least as good as the Fibonacci
model with regards to braiding, which also conforms with
the results shown in Fig. 9.
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FIG. 9. Comparison of the k = 2, 3, 4, 5, 6, 8 anyon models. For all models, the compilation error as a function of the braid word
length (a) is consistent with an overall power-law convergence to the target gate. The cyclicity of each model, illustrated in the Argand
plane (b), reveals that the k = 2 model is contained within the k = 6 model and that the k = 3 model is contained within the k = 8
model. The k = 2 and k = 4 cases are supplemented with R√2π phase gates.

C. Decoherence in nonuniversal anyon models

Adding a phase gate to the otherwise topologically pro-
tected braid generators comes with a price. Unlike the
topological gates that are immune to conventional sources
of noise, the added phase-gate generator cannot be imple-
mented in hardware without accompanying decoherence.
The more phase gates are used, the more adverse the effect
of the noise brought along. It is therefore preferable to keep
the phase-gate count as low as possible, as the cumula-
tive effect of the noise during braiding may have terminal
consequences for the computation.

For the Ising anyon model, we might expect the uncon-
strained fraction of phase gates contained in a braid word
to be about 20% on average for long sequences, since there
are in total five generators, four topological and one con-
ventional, in the set. To see if it is possible to suppress
the dependence on this “necessary but undesirable” gener-
ator, we introduce an acceptance probability in the Monte
Carlo algorithm p ∼ e−Cn/l, where C ∈ R, n is the number
of phase gates in the sequence, and l is the length of the
braid word. Thus, as n increases, the acceptance probabil-
ity decreases. Adding a phase gate to the braid word can
thus be regarded as resulting in an energy penalty, akin to
that introduced in the spin chain picture discussed in Sec.
II A 1, but here the energy is proportional to the number
of phase gates already present in the chain. In Fig. 10 we
show the fraction of phase gates used in a compiled braid
word as a function of the control parameter C for a fixed
braid word precision.

From this we infer that the optimized phase-gate depen-
dence saturates at values much lower than the expected
20%. Specifically, the k = 2 results converge toward 10%
and the k = 4 results toward 5%. To explain this obser-
vation, we consider the group structure generated by the
braid generators. All one-qubit models have two genera-
tors (and their inverses) that are cyclical. Specifically, for
any generator σi, there exists a nonzero integer q such
that σ q

i = I , where I is the identity. As the generators are
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FIG. 10. Ratio Nφ/l of the number of noisy phase gates Nφ
and the braid word length l = Nφ + Nσ , where Nσ is the number
of topologically protected gates, as a function of the acceptance
parameter C for compilation of a fixed length l = 50, fixed pre-
cision d = 5× 10−3 braid word. Horizontal lines estimate the
saturated fractions.
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8 cycles and 12 cycles in the k = 2 and k = 4 models,
respectively, the order of the subgroups generated by these
elements independently are of the same order as the ele-
ments that generate them, i.e., 8 and 12. For simplicity,
consider the subgroup �σ1 generated by σ1 [67]. We claim
that the k = 4 braid group is of greater order due to its
cyclicity. To make this more explicit, we consider the coset
structure in the two groups. Since every distinct element in
the main group must belong to a coset of the σ1 subgroup,
the order of the subgroup divides the order of the main
group, since each coset has to contain the same number
of elements as the subgroup [68]. Thus, if �σ1 denotes the
subgroup of the full group � that is generated by σ1, and n
denotes the index of this subgroup, i.e., [�σ1 : �] = n, we
may express the order of � as

|�| = |�σ1 | [�σ1 : �] = |�σ1 |n. (16)

Because of the cyclicity of the groups, not only is the order
of the cyclic subgroups �σ1 and �σ2 greater for k = 4, but
so is the index nk=4. Hence, the order of the k = 4 braid
group is greater than that of the k = 2 braid group.

Considering a sphere of radius R, see Fig. 11, each ele-
ment in the group will occupy a solid angle � = 4π/|�|,
assuming that the points are somewhat evenly distributed
over the surface, which should be a fair assumption for
dense gate sets. This solid angle corresponds to a spher-
ical cap with circular boundary and an arc length that
defines the “curved” radius r. The solid angle on a sphere
is � = A/R2, where A is the area of the corresponding
spherical cap. In spherical coordinates we thus find that

� = 1
R2

∫ 2π

0

∫ θ

0
R2 sin(θ)dϕdθ = 2π [1− cos(θ)].

(17)

Setting this equal to 4π/|�| yields θ = arccos(1− 2/|�|),
which results in an expression for the orthodromic distance
r of

r(|�|) =
∫ θ

0
Rdθ = R arccos

(
1− 2
|�|

)
. (18)

This distance is the maximum distance for any point on the
sphere to a group element, as each element is occupying
the same area and solid angle. Note that this function goes
to 0 as the group order |�| goes to∞, which corresponds
to the fully universal anyon models for which the target
gate can be approximated to arbitrary accuracy.

We also conclude that the average distance from any
group element to any point on the sphere is shorter in
the k = 4 model than in the k = 2 model since |�k=4| >
|�k=2|. This further implies a weaker phase-gate depen-
dence for k = 4, in agreement with the results presented in
Fig. 10.

FIG. 11. Schematic of a Bloch sphere illustrating the notation
used in the text.

According to conventional wisdom, in decoherence
prone quantum computation about a thousand physical
qubits may be required per one logical qubit to facilitate
error correction [69,70]. In contrast, our results suggest
that the hybrid Ising anyon model and the k = 4 model
might only require an order of magnitude fewer physical
qubits for each logical one in order to suppress the logi-
cal error to arbitrarily low levels, since in these systems
the phase-gate count can be suppressed to 10% and 5%,
respectively. Of course, this estimate needs to be taken
with a grain of salt until tested on real hardware. Never-
theless, protocols such as that discussed in Ref. [71] have
been developed that utilize fusion to purify phase rotated
states from which the phase gates can be extracted. These
processes are prone to errors and, since the number of dis-
tilled states needed in order to implement a certain number
of phase gates should be proportional to the number of
phase gates, we conclude that correspondingly fewer dis-
tilled states are required in the SU(2)2 and SU(2)4 models,
compared to a fully conventional quantum computer. In
Fig. 12 we demonstrate the effect of decoherence on the
compiler error when noise is added to 5%, 10%, or 100%
of the gates for the cases of k = 4, 2, and 2, respectively.
These curves represent the error purely due to noise when
the logical error is subtracted for the braid word lengths
50, 250, 1250, and 6250. As is evident in Fig. 12, the longer
the braid word, the more severe the effect of the noise since
a higher number of phase gates is used. The 100% case
corresponds to a 100% conventional quantum computation
with the Ising anyon model, for which none of the gen-
erators would possess intrinsic topological protection, or
they would all be prone to strong topological decoherence
at the hardware level, e.g., due to quasiparticle poisoning
[72]. This case is included as a benchmark and reference
to conventional quantum computing platforms.

The decoherence noise is modeled as small random
unitary rotations. In the su(2) basis we can express the
corresponding operator as

Unoise = ei�θ ·�σ ,
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FIG. 12. The braid word error
purely due to the ei

√
2π phase gates

deployed in the hybrid k = 4 (pur-
ple circles) and k = 2 (cyan stars,
yellow squares) Ising anyon mod-
els as functions of the strength ν

of the phase-gate noise. The braid
word length l considered is noted in
each frame.

where �σ is a vector of Pauli matrices and �θ = (θ1, θ2, θ3).
We sample the parameters θi from a narrow normal dis-
tribution with zero mean, i.e., θi ∈ N (0, ν), where ν is
the standard deviation. By increasing ν, greater phase-
gate noise fluctuations are allowed, which means that the
standard deviation may be interpreted as the “strength”
of the noise. An in-depth analysis of the impact of
various specific kinds of noise sources is provided in
Ref. [73].

D. Noise corrupted braid words in the hybrid Ising
anyon model

In Fig. 13 we show the results when the noise is applied
to the braid words. We set ν = {0, 10−5, 10−4, 10−3} in
Figs. 13(a)–13(d), respectively. In the ν = 0 case the noise
is absent and the MCESKA should be applied to achieve
the best absolute accuracy. As ν is gradually increased,
error minima first appear and continuously shift toward
shorter braid word lengths, Figs. 13(b) and 13(c), until

(a)

(c) (d)

(b)

d(
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,U
0)

d(
U

,U
0)

FIG. 13. Absolute error, including
the inherent braid word approxima-
tion and the contributions from the
noise in Fig. 12, as a function of
the braid word length. Panels (a)–(d)
correspond to the noise levels ν =
0, 10−5, 10−4, 10−3, respectively. The
inset in (a) shows the optimal braid
word length corresponding to the
minima in (a)–(d), as a function of the
noise strength ν. Note that, when the
minimum appears to occur at the end
of the interval, the true minimum may
be located outside the interval. This is
accounted for in the inset in (a), which
presents the locations of the true min-
ima. The same unitaries U0 have been
used for all of the curves.
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ν = 10−3 is reached in Fig. 13(d), for which the error min-
ima are obtained at the zeroth depth in the algorithm for
l = 50. Hence, for the noisy gate region, the best results
would be achieved with the direct Monte Carlo method.

Summarizing, in the zero noise case the full power of the
Monte Carlo enhanced Solovay-Kitaev algorithm should
be employed, whereas in the intermediate noise region a
small number of recursions could be beneficial. For ν ≥
10−3, the plain Monte Carlo method should be invoked for
the best results. Note that ν = 10−3 is still quite small so it
is reasonable to assume that the noise will be in this range
or greater in realistic near-future applications.

The inset in Fig. 13(a) shows the optimal braid word
length, the locations of the minima in (a)–(d), as a func-
tion of the phase-gate noise ν. As the noise gets stronger,
the optimal braid word length gets monotonically shorter.
This highlights the important observation that, although in
a decoherence free universal TQC such as the Fibonacci
anyon model, arbitrary accuracies can in principle be
achieved just by increasing the length of the braid words; in
realistic applications the best attainable accuracy is always
noise limited and no further benefit can be gained from
deploying excessively long braid words.

IV. CONCLUSIONS

We develop a generic Monte Carlo enhanced Solovay-
Kitaev quantum compiler algorithm to search for braid
word approximations to quantum logic gates. Motivated
by the potential of Majorana fermion quasiparticle zero
modes as a physical realization of the Ising anyon model,
we deploy the MCESKA to assess and compare the per-
formance and potential of the Fibonacci and the Ising
anyon models for topological quantum computation. Fur-
thermore, we expand our analysis to include the k = 4, 5, 6,
and 8 SU(2)k anyon models. We find that the plain Monte
Carlo quantum compiler outperformed the brute force
search method in terms of efficiency and required resources
while achieving comparable accuracy, and when combined
with the SKA, leveraged the performance by 2 orders of
magnitude, compared to Dawson’s and Nielsen’s imple-
mentation of the SKA in Ref. [42]. Although other imple-
mentations that are even more efficient than the basic SKA
exist, they are typically nongeneric, model-specific algo-
rithms [52–57]. One of the major benefits of the MCESKA
is that it retains full model independent generality while
providing efficient means to perform quantum gate compi-
lation. Similar benefits have recently been achieved using a
machine learning approach [43]. Moreover, the MCESKA
is a versatile algorithm that can easily accommodate arbi-
trary constraints on the braid words. For instance, an
inclusion of a phase-gate acceptance criterion allowed us
to suppress the noisy phase-gate count significantly. It is
also directly applicable to multiqubit systems with an arbi-
trary number of braid generators, and can be applied to

compile gates for both braid-based and measurement-only
topological quantum computers, as well as for compil-
ing quantum circuits for conventional gate-based quantum
computers.

Presently, physical systems hosting Majorana fermion
zero modes appear to be among the most promising plat-
forms for TQC. Since the resulting Ising anyon model
cannot achieve universal quantum computation by braid-
ing alone, it means that such systems will have to also
deal with conventional forms of decoherence. Our results
suggest that the hybrid anyon models’ susceptibility to
conventional types of decoherence due to environmental
noise can be reduced by efficient gate compilation that
minimizes the use of the auxiliary, noisy phase gates.
The seemingly ineffective raw Ising anyon model can be
made computationally universal by adding an irrational
phase gate to its generator set. This extra gate drastically
enhances the quality of the generator set and the results
presented in Fig. 8 surprisingly indicate that it could actu-
ally perform slightly better than the inherently universal
Fibonacci model that enjoys full benefits of topological
protection.

When phase-gate noise is introduced to the anyon mod-
els, however, we find that, even in the case of rather weak
noise, the use of long braid words results in larger compi-
lation errors than the shorter ones because of the necessary
use of a larger number of noisy phase gates. The down-
side of this is that the theoretical accuracy of the hybrid
topological quantum computation is limited by the con-
ventional kinds of noise, while the upside is that relatively
short braid words of only tens or hundreds of braidings
can be used, which is good news from the future hardware
implementation point of view.

Most importantly, where as a fully conventional quan-
tum computer of the present day may be estimated to
require of the order of a thousand physical qubits per log-
ical qubit [74] due to having to dispense vast resources on
error correction protocols, a hybrid topological quantum
computer based on Ising anyons might only need an order
of magnitude fewer in order to achieve comparable compu-
tational accuracy. This demonstrates that even the hybrid
topological quantum computer models retain a clear topo-
logical advantage over the conventional kinds of quantum
computers.

In conclusion, that a hybrid Ising anyon model may,
under similar circumstances, perform significantly better
than a conventional decoherence prone quantum com-
puter seems promising for the quest of realizing Majorana
fermion–based topological quantum computers.
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APPENDIX A: ELEMENTS OF TOPOLOGICAL
QUANTUM COMPUTATION

The theoretical landscape of anyon theory is incredibly
rich and substantial with modular tensor category theory
[75–77] and topological quantum field theory (TQFT)
[78–80] being the main pillars. Here, though, we are
primarily concerned with applications in the context of
quantum computation. The transformations induced when
exchanging two anyons are not restricted to a factor ±1
as for bosons and fermions, but instead an arbitrary phase
may be acquired. This special attribute, along with the
intrinsic topological protection possessed by topological
states, constitute the motivational foundation for the pur-
suit of TQC.

When two anyons are exchanged, the world lines will
trace out a braid in (2+ 1)-dimensional space-time with
two spatial dimensions and one time dimension. The set
of braids together with the composition operation consti-
tute a group known as the braid group [81]. In partic-
ular, we are interested in the three-stranded braid group
B3 as this group can be used for encoding and process-
ing one-qubit quantum gates. Letting σ1 denote the braid
formed when the first anyon is wrapped around the sec-
ond, and σ2 denote the braid corresponding to the second
wrapped around the third, the generator set �B3 of B3 is
�B3 = {σ1, σ2, σ−1

2 , σ−1
1 }. These generators are presented

pictorially in Figs. 14 and 15 with time flowing in the
upward direction indicated by the arrows. These braid
diagrams correspond to planar projections of the (2+ 1)-
dimensional anyon world lines. When two lines intersect,
the continuous line is understood to lay on top of the
discontinuous line.

It is evident from these figures that, when a braid is com-
posed with its inverse by stacking the diagram on the left

FIG. 14. A pictorial representation of the generators of the
braid group B3. The σ1 operation swaps the positions of the first
two anyons, σ2 swaps the positions of the last two anyons, and
the identity operation I does nothing to the system.

FIG. 15. The inverse operation σ−1
i of the braid σi.

in Fig. 15 on top of the one on the right, or vice versa,
the braid will “untie” and become identical to the identity
operation. If we consider the generic braid group BN on
N strands with generators {σi}N−1

i=1 , we can also conclude
that any nonadjacent braids have to commute. In addition
to this, consistency when permuting the temporal order in
which the crossings of the three strands appear must be
imposed. These three conditions form what is knows as
the Yang-Baxter equations [82]:

σiσj = σj σi if |i− j | ≥ 2, (A1a)

σiσi+1σi = σi+1σiσi+1 if 1 ≤ i ≤ N − 2, (A1b)

σiσ
−1
i = σ−1

i σi = I . (A1c)

In Fig. 16 we show a graphical representation of the second
equation in the Yang-Baxter equations, which illustrates
that the strands can be deformed such that the temporal
order is changed. It should be clear that the configu-
ration on the left-hand side can be deformed into that
on the right-hand side, and vice versa, without changing
the topology. The set of equations in (A1) admits many
matrix solutions. The simplest one corresponds to the one-
dimensional representation and yields a trivial phase factor
eiφ . However, there are also solutions constituting mul-
tidimensional representations, which give rise to a richer
structure [10,15].

Thus far we have only discussed anyons and the emer-
gence of quasiparticles with fractional statistics in two
dimensions generically. Anyons can further be catego-
rized into abelian and nonabelian subspecies. These two

=

FIG. 16. A graphical representation of the Yang-Baxter Eq.
(A1b).
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subspecies are distinguished by the commutativity of the
corresponding braid group they transform under; abelian
anyons transform under an abelian braid group representa-
tion that is one dimensional, and nonabelian anyons under
a higher-dimensional nonabelian braid group representa-
tion. The dimensionality of the corresponding representa-
tion space has important consequences for what happens
when multiple anyons are involved. If we consider two
anyons and perform a dilation transformation, these quasi-
particles may be regarded as one composite object. This
process is known as fusion. Because of the simple structure
of abelian anyons, the fusion outcome is always definite,
whereas for the nonabelian anyons, it is indefinite. Consid-
ering the fusion product of two nonabelian anyons with
charges α and β, they may, for instance, fuse into the
vacuum denoted by 1 or a quasiparticle with charge ψ .
Mathematically, this is expressed as

α ⊗ β = 1⊕ ψ . (A2)

The decomposition rule in Eq. (A2) arises entirely due
to the reducibility of the joint representation spaces in
the nonabelian case, whereas the simple one-dimensional
structure of abelian anyons have no nontrivial invariant
subspaces, thus resulting in a definite fusion outcome.

In TQC, the core idea is to utilize the fusion product as
a qubit in which information can be encoded. Moreover,
since the state of the anyons can be transformed by braid-
ing them, the corresponding braid group may be used for
producing a circuit of quantum gates. A computational pro-
cess is thus initiated by creating pairs of nonabelian anyons
from the vacuum, followed by a particular series of braids
that have been determined in advance based on the cho-
sen quantum circuit. At the end of the braiding, the anyons
are brought (sequentially fused) together, which is the read
out. Taking the fusion product in Eq. (A2) as an example,
we can either measure a vacuum, or a composite object ψ ,
each with a certain probability that normalizes to 1.

APPENDIX B: SU(2)k ANYON MODELS

In the pursuit of quantum computation a wide range of
mathematical models have been suggested. Some of the
most notable anyon models are the so-called SU(2)k mod-
els. These models correspond to various truncations of the
spin chain expansion.

Nonabelian SU(2)k theories are gauge invariant only up
to a phase 2πnk, where n is the winding number. When
computing the amplitude for a given process, this quan-
tity is gauge invariant only if k is an integer. Hence,
k ∈ Z labels the theory, and is referred to as the level of
the theory. For more detailed descriptions of TQFTs and
SU(2)k Chern-Simons theories in particular, see, e.g., Refs.
[78,83,84].

1. Deformed SU(2) spin algebras

In quantum mechanics the joint tensored space of inter-
acting spins can be decomposed into a direct sum of
orthogonal irreducible subspaces. In particular, for spins
S1 and S2, this is expressed as

S1 ⊗ S2 = |S1 − S2| ⊕ · · · ⊕ (S1 + S2). (B1)

If we consider all representations of SU(2), the spins
may take any integer or half-integer value, i.e., Si =
1
2 , 1, 3

2 , 2, . . . . This sequence continues to infinity, but what
if we terminate it after a specific value? This is essentially
what is meant by deforming the algebra as only a subset of
all representations are allowed. Thus, if we consider gen-
eralized angular momenta ji and choose some truncation
level k, the corresponding algebra decomposes as [85]

j1 ⊗ j2 = |j1 − j2| ⊕ (|j1 − j2| + 1)⊕
· · · ⊕min(j1 + j2, k − j1 − j2) (B2)

with l = 1
2 , 1, 3

2 , 2, . . . , k/2 the allowed values for the gen-
eralized spin and k→∞ corresponding to the full SU(2)
algebra.

For the sake of concreteness, let us consider two spin- 1
2

particles for which

1
2 ⊗ 1

2 = 0⊕ 1. (B3)

In words, two spin- 1
2 spaces decompose as a spin-0 (sin-

glet) space and a spin-1 (triplet) representation space. This
is the only nontrivial fusion rule for k = 2. Similarly, for
two spin-1 particles at level k = 3, we have

1⊗ 1 = 0⊕ 1, (B4)

since the spin-2 representation is now excluded. Note that
the notion of spin and angular momentum is used here in
a general sense. That is, it could be any type of “charge”
obeying the same algebra. In this particular context, these
labels represent topological charges of anyons and the
tensor product represents the fusion of two anyons, i.e.,
their combined global charge. However, when k is odd,
there exists a fusion automophism, which defines a duality
between the integer and half-integer charges. In general,
we have the map [86]

k
2
⊗ j = j ′, (B5)

where j has half-integer spin (or integer) and j ′ has integer
spin (or half-integer if j has integer spin). Complete sets
of fusion rules are shown in Tables I–V, respectively, for
k = 8, 6, 4, 3 and 2 SU(2)k anyon models.

In TQC we let the fusion product constitute a qubit.
First, anyon pairs are created from the vacuum, then the
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(a)

(b)

FIG. 17. Two Bratteli diagrams for (a) k = 2 and (b) k = 3.
The vertex numbers correspond to the degeneracy of the fusion
outcome and thus the dimension of the Hilbert space. These
numbers are determined by the number of paths from the ori-
gin leading to a particular vertex. The integer N is the number
of spin- 1

2 anyons participating in the fusion process and S is the
total spin (charge) [45].

computation is carried out by braiding them, and finally
they are brought together (fused), which corresponds to the
read out. For instance, in Eq. (B4) one would measure a
spin equal to 0 with a probability p0, or 1 with probabil-
ity p1, where p0 + p1 = 1. The degeneracy of the fusion
outcome for an arbitrary N -anyon system can be neatly
summarized using a Bratteli diagram; see Fig. 17 [45].
Bratteli diagrams are very useful as they provide a sim-
ple way of determining the dimension of the fusion space.
The dimension depends on the topological charge of the
anyons, and is determined by the number of paths leading
to that particular vertex. In general, the dimension of the
fusion space of N anyons can be computed as

�n�Nq =
(

qn/2 − q−n/2

q1/2 − q−1/2

)N

, (B6)

where n ∈ 1
2Z and q = ei2π/(k+2) [45]. This is referred

to as a q-deformed integer and it can be shown that all
SU(2) representations are recovered, i.e., �n�q → n and
thus q→ 1, as we let k→∞ [87]. In fact, this is the
very reason why the Hilbert spaces spanned by multiple
full SU(2) spins can be decomposed into irreducible sub-
spaces since these systems correspond to k→∞, which
yields an integer dimension. Thus, we can think of �n�q as
a deformation of the integer n. When k takes on a finite
value, however, the deformed integer will in many cases
be irrational, which means that such a decomposition is not

(a) (b)

FIG. 18. Two fusion tree representations, (a) and (b), of the
process q1 ⊗ q2 ⊗ q3 ⊗ q4 where 1 represents the vacuum.

always possible as we eliminated higher-dimensional rep-
resentation spaces, leaving a deformed structure behind.
This nontrivial decomposition signals an existence of non-
abelian braiding statistics, which will be discussed in more
detail in the next subsection.

It is convenient to introduce a schematic notation for the
fusion processes. Let us denote by qi the charge of the ith
anyon and by xi the fusion outcome of anyons i and i+ 1;
then a fusion process can be represented as a tree diagram.
In Fig. 18(a) a fusion process involving the charges q1,
q2, q3, and q4 is presented. Henceforth, we shall adopt this
notation for fusion processes.

2. F moves and R moves

When anyons participate in a fusion process, the final
outcome must be independent of the order in which the
anyons are being fused, since the total charge must be pre-
served. Or in mathematical terms, we have to enforce asso-
ciativity upon the fusion rules. For instance, in Fig. 18(a),
the anyons are fused sequentially, but we could just as well
have fused q1 with q2 right away to form x′1 (this is essen-
tially what is happening already as q1 is first fused with
the vacuum, which implies that x′1 = x2) and then x′1 = x2
with the fusion outcome x′2 of q3 and q4. This process is
depicted in Fig. 18(b).

In topological quantum computation the two configura-
tions, Figs. 18(a) and 18(b), correspond to different basis
states and a change from one basis to another is realized
by applying an F move. For simplicity, let us consider
three anyons a, b, c and their fusion product d, which can
be formed in N d

abc distinct ways. Their fusion space Vd
abc

can then be decomposed in two different, but up to an
isomorphism, similar ways such that [11]

Vd
abc �

⊕
e

Ve
ab ⊗ Vd

ec �
⊕

e′
Ve′

bc ⊗ Vd
ae′ . (B7)

First, the tensor product of the vector spaces correspond-
ing to a and b forming e, and e and c forming d, can be
composed, where e is summed over. And second, the ten-
sor product of the vector spaces corresponding to b and c
forming e′, and a and e′ forming d can be composed, where
e′ is summed over. We may also assign ket vectors to the
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FIG. 19. A graphical illustration of the F move corresponding
to the Eq. (B10).

different bases

|(ab)c→ d; e,μ, ν〉 ≡ |ab; e,μ〉 ⊗ |ec; d, ν〉 (B8)

and

|a(bc)→ d; e′,μ′, ν ′〉 ≡ |ae′; d, ν ′〉 ⊗ |bc; e′,μ′〉 . (B9)

Here μ, ν,μ′, and ν ′ label the specific fusion channels out
of the N d

abc unique products. The transformation F maps
the basis a⊗ (b⊗ c) to (a⊗ b)⊗ c and can be formulated
as

|(ab)c→ d; e,μ, ν〉
=

∑
e′,μ′,ν′

(Fd
abc)

e′μ′ν′
eμν |a(bc)→ d; e′,μ′, ν ′〉 , (B10)

or expressed graphically as shown in Fig. 19. Moreover,
braiding two of the charges should not change the total
charge. In Fig. 20 we illustrate this charge conservation
in terms of an R move. By applying these transforma-
tions sequentially, it is possible to derive two consistency
equations known as the hexagon equation

∑
λγ

[Rac
e ]αλ[Facb

d ](eλβ)(gγ ν)[Rbc
g ]γμ

=
∑

f σδψ

[Fcab
d ](eαβ)(f δσ )[R

fc
d ]σψ [Fabc

d ](f δψ)(gμν) (B11)

and the pentagon equation

∑
δ

[Ffcd
e ](gβγ )(lδν)[Fabl

e ](f αδ)(kλμ)

=
∑
hσψρ

[Fabc
g ](f αβ)(hσψ)[Fahd

e ](gσγ )(kλρ)[Fbcd
k ](hψρ)(lμν),

(B12)

and a graphical representation of these equations can be
found, for instance, in Refs. [8,13,86].

The solutions to this set of equations embody all essen-
tial information about the anyon model since we are mostly
interested in the transformation properties under F moves
and R moves. Suppose that we would like to exchange
charges a and b and that our initial basis is |a(bc)→ d〉.
We would first have to transform the basis to |(ab)c→ d〉
under the action of F , in order to execute the exchange,
and thereafter return to the initial basis by acting with the
F−1. Hence, in this new basis, the braid generators would
be given by

Bab = F−1RabF (B13)

and

Bbc = Rbc. (B14)

The solutions to the hexagon and pentagon equations for
an arbitrary value of k have been determined in the com-
prehensive literature on quantum groups; see, for instance,
Refs. [87–89]. These solutions are

Rc
ab = (−1)(a+b−c)/2q−[a(a+2)+b(b+2)−c(c+2)]/2 (B15)

and

(Fabc
d )ef = (−1)a+b+c+d�(a, b, e)�(c, d, e)

×�(b, c, f )�(a, d, f )
√
�2e+ 1�

√
�2f + 1�

×
{

a b e
c d f

}
, (B16)

where

{
a b e
c d f

}
=

∑
n

(−1)n�n+ 1�
�a+ b+ c+ d − n�! ×

1
�a+ c+ e+ f − n�! �b+ d + e+ f − n�! �n− a− b− e�!

× 1
�n− c− d − e�! �n− b− c− f �! �n− a− d − f �! . (B17)

Equation (B17) is a q-deformed version of the Wigner
6j symbol describing the transformation under recoupling
in the representation theory of SU(2)k.

3. Universal quantum computation

Computational universality is required in order to
carry out general purpose quantum computation. The
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FIG. 20. A graphical illustration of the R move.

Solovay-Kitaev theorem, discussed in more detail in
Sec. II C, states that universality is achieved only if the
gate set is generating a topologically dense cover in SU(2).
Thus, an important question is for what values of k is
this satisfied. All information about the relation between
the level k and universality can be summarized in the
following two theorems [13].

Theorem 2 (Jones). For k ∈ {1, 2, 4}, ρk,n(Bn) is a finite
group. For other values of k and n ≥ 3, ρk,n(Bn) is infinite,
except for when k = 8 and n = 4.

Here ρk,n is a representation of the braid group Bn on n
strands. It was later shown by Freedman et al. [90] that the
whole special unitary group will be contained in the closed
image of this representation for these particular values of
k, which led to the second fundamental theorem [90].

Theorem 3 (Freedman, Larsen, Wang). When the image
of ρk,n is infinite, it holds that SU(Vk,n) ⊂ image(ρk,n).

In words, this simply entails that, when the closed image
is infinite, the special unitary group will be contained in the
image, which further implies that universality is achieved.
This is a very natural result as the Bloch sphere is a com-
pact manifold. Hence, if the image contains an infinite
number of unique points, the set must fill up the entire
sphere densely.

4. The Fibonacci and Ising anyon models

The Fibonacci (k = 3) and Ising (k = 2) anyon models
are the simplest and by far the most studied SU(2)k mod-
els. By virtue of the automorphism defined in Eq. (B5), the
SU(2)3 Fibonacci anyon model only has integer (or half-
integer) charges. In particular, for k = 3, we have j = 0, 1,
which yields the fusion rules shown in Table V where 0
corresponds to the vacuum charge 1 and 1 to the Fibonacci
anyon τ . These fusion rules, as well as those for any other
value of k, can be derived from Eq. (B2). Moreover, solv-
ing the hexagon and pentagon equations, Eqs. (B12) and
(B11), provides the explicit forms of the braid matrix R
and the basis change matrix F , i.e.,

Rk=3 =
(

e−i4π/5 0
0 ei3π/5

)
,

Fk=3 =
(
ϕ−1/2 ϕ−1/2

ϕ−1/2 −ϕ−1/2

)
, (B18)

which in turn can be used to obtain the braid matrices

σ1 = Rk=3 =
(

e−i4π/5 0
0 ei3π/5

)
(B19)

and

σ2 = (FRF−1)k=3 =
(
ϕ−1ei4π/5 ϕ−1/2e−i3π/5

ϕ−1/2e−i3π/5 −ϕ−1

)
,

(B20)

where ϕ = (1+√5)/2 is the golden ratio. The emer-
gence of this particular number is due to the expansion
of the anyon Hilbert space as anyons are added to the
system. Two anyons yield a Hilbert space of dimen-
sion 2, three of dimension 3, four of dimension 5, etc.,
resulting in the Fibonacci sequence and the quantum
dimension dk=3 = (1+

√
5)/2 of the Hilbert space. The

quantum dimension may also be computed by means of
Eq. (B6) by inserting k = 3. The Fibonacci generators
are tenth roots of unity and the entries of the matri-
ces generated by Fibonacci braids are all members of

TABLE I. Fusion table for the k = 8 anyon model.

⊗ j1 = 0 j1 = 1
2 j1 = 1 j1 = 3

2 j1 = 2 j1 = 5
2 j1 = 3 j1 = 7

2 j1 = 4

j2 = 0 0 1
2 1 3

2 2 5
2 3 7

2 4
j2 = 1

2
1
2 0⊕ 1 1

2 ⊕ 3
2 1⊕ 2 3

2 ⊕ 5
2 2⊕ 3 5

2 ⊕ 7
2 3⊕ 4 7

2
j2 = 1 1 1

2 ⊕ 3
2 0⊕ 1⊕ 2 1

2 ⊕ 3
2 ⊕ 5

2 1⊕ 2⊕ 3 3
2 ⊕ 5

2 ⊕ 7
2 2⊕ 3⊕ 4 5

2 ⊕ 7
2 3

j2 = 3
2

3
2 1⊕ 2 1

2 ⊕ 3
2 ⊕ 5

2 0⊕ 1⊕ 2⊕ 3 1
2 ⊕ 3

2 ⊕ 5
2 ⊕ 7

2 1⊕ 2⊕ 3⊕ 4 3
2 ⊕ 5

2 ⊕ 7
2 2⊕ 3 5

2
j2 = 2 2 3

2 ⊕ 5
2 1⊕ 2⊕ 3 1

2 ⊕ 3
2 ⊕ 5

2 ⊕ 7
2 0⊕ 1⊕ 2⊕ 3⊕ 4 1

2 ⊕ 3
2 ⊕ 5

2 ⊕ 7
2 1⊕ 2⊕ 3 3

2 ⊕ 5
2 2

j2 = 5
2

5
2 2⊕ 3 3

2 ⊕ 5
2 ⊕ 7

2 1⊕ 2⊕ 3⊕ 4 1
2 ⊕ 3

2 ⊕ 5
2 ⊕ 7

2 0⊕ 1⊕ 2⊕ 3 1
2 ⊕ 3

2 ⊕ 5
2 1⊕ 2 3

2
j2 = 3 3 5

2 ⊕ 7
2 2⊕ 3⊕ 4 3

2 ⊕ 5
2 ⊕ 7

2 1⊕ 2⊕ 3 1
2 ⊕ 3

2 ⊕ 4
2 0⊕ 1⊕ 2 1

2 ⊕ 3
2 1

j2 = 7
2

7
2 3⊕ 4 5

2 ⊕ 7
2 2⊕ 3 3

2 ⊕ 5
2 1⊕ 2 1

2 ⊕ 3
2 0⊕ 1 1

2
j2 = 4 4 7

2 3 5
2 2 3

2 1 1
2 0
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TABLE II. Fusion table for the k = 6 anyon model.

⊗ j1 = 0 j1 = 1
2 j1 = 1 j1 = 3

2 j1 = 2 j1 = 5
2 j1 = 3

j2 = 0 0 1
2 1 3

2 2 5
2 3

j2 = 1
2

1
2 0⊕ 1 1

2 ⊕ 3
2 1⊕ 2 3

2 ⊕ 5
2 2⊕ 3 5

2
j2 = 1 1 1

2 ⊕ 3
2 0⊕ 1⊕ 2 1

2 ⊕ 3
2 ⊕ 5

2 1⊕ 2⊕ 3 3
2 ⊕ 5

2 2
j2 = 3

2
3
2 1⊕ 2 1

2 ⊕ 3
2 ⊕ 5

2 0⊕ 1⊕ 2⊕ 3 1
2 ⊕ 3

2 ⊕ 5
2 1⊕ 2 3

2
j2 = 2 2 3

2 ⊕ 5
2 1⊕ 2⊕ 3 1

2 ⊕ 3
2 ⊕ 5

2 0⊕ 1⊕ 2 1
2 ⊕ 3

2 1
j2 = 5

2
5
2 2⊕ 3 3

2 ⊕ 5
2 1⊕ 2 1

2 ⊕ 3
2 0⊕ 1 1

2
j2 = 3 3 5

2 2 3
2 1 1

2 0

the polynomial ring Z[eiπ/5] = {c1 + c2eiπ/5 + c3ei2π/5 +
c4ei3π/5|ci ∈ Z}. Rings, like groups, are closed structures,
which implies that only unitary matrices with entries in this
ring can be approximated exactly.

The SU(2)2 Ising anyon model has charges j = 0, 1
2 , 1,

where in addition to the vacuum (j = 0), we have the Ising
anyon σ (j = 1

2 ) and the ψ particle (j = 1). Computing
the fusion rules of these particles yields the fusion table in
Table VI. Similarly to the Fibonacci model the F and R
matrices can be computed to be

Rk=2 = e−iπ/8
(

1 0
0 i

)
, Fk=2 = 1√

2

(
1 1
1 −1

)
,

(B21)

which in turn yield the braids matrices

σ1 = Rk=2 = e−iπ/8
(

1 0
0 i

)
(B22)

and

σ2 = (FRF−1)k=2 = e−i4π/8

√
2

(
1 i
i 1

)
. (B23)

An alternative method of determining the F and R
matrices is to employ the Temperley-Lieb algebra, which
may be regarded as a pictorial string representation of
Eqs. (A1), and the Jones-Wenzl projectors [87,91]. This
approach allows computation of the matrices for any value
of k by means of graphical calculus [91].

It is evident in the structure of the F matrix that the
quantum dimension of the Ising anyon model is dk=2 =√

2. An interesting property of the Ising braid group rep-
resentation for n = 2 is that it maps bijectively onto the

TABLE III. Fusion table for the k = 5 anyon model.

⊗ j1=0 j1 = 1 j1 = 2

j2 = 0 0 1 2
j2 = 1 1 0⊕ 1⊕ 2 1
j2 = 2 2 1 0⊕ 1

Clifford group, meaning that Ising anyons are an imple-
mentation of the Clifford group via braiding. For systems
comprised of n �= 2 qubits, however, it only maps onto
subgroups of the Clifford group [92]. The Clifford group
can be made universal by adding a π/4 gate, so it must
also hold that the two-qubit Ising anyon model becomes
universal with this choice of supplementary phase. In Sec.
III we discussed the fact that any nonuniversal single-qubit
anyon model can be made universal via the addition of an
irrational phase gate to the generator set.

5. Model-k (k = 4, 5, 6, 8) anyons

We briefly outline the structure of the anyon mod-
els labeled by k = 4, 5, 6, 8. Contrary to the Ising and
Fibonacci cases, the higher-level models provide multiple
options of fusion products that can be used as a qubit. For
k = 4, the model contains the charges j = 0, 1

2 , 1, 3
2 , 2 and

the fusion table is provided in Table IV.
Similarly, Eq. (B2) may be used for obtaining the fusion

tables for k = 5, 6, 8 as well. In the k = 5 model we
have the charges j = 0, 1

2 , 1, 3
4 , 2, 5

2 , but due to the duality
defined by Eq. (B5), there exists an automorphism from
the integer subset to the half-integer subset, which means
that we only have to consider one of them. Therefore, in
the k = 5 model it is sufficient to consider the j = 0, 1, 2

TABLE IV. Fusion table for the k = 4 anyon model.

⊗ j1 = 0 j1 = 1
2 j1 = 1 j1 = 3

2 j1 = 2

j2 = 0 0 1
2 1 3

2 2
j2 = 1

2
1
2 0⊕ 1 1

2 ⊕ 3
2 1⊕ 2 3

2
j2 = 1 1 1

2 ⊕ 3
2 0⊕ 1⊕ 2 1

2 ⊕ 3
2 1

j2 = 3
2

3
2 1⊕ 2 1

2 ⊕ 3
2 0⊕ 1 1

2 ⊕ 3
2

j2 = 2 2 3
2 1 1

2 ⊕ 3
2 0

TABLE V. Fusion table for the k = 3 anyon model.

⊗ j1=0 j1 = 1

j2 = 0 0 1
j2 = 1 1 0⊕ 1
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TABLE VI. Fusion table for the k = 2 anyon model.

⊗ j1=0 j1 = 1
2 j1 = 1

j2 = 0 0 1
2 1

j2 = 1
2

1
2 0⊕ 1 1

2
j2 = 1 1 1

2 0

cases. The fusion table for the k = 5 anyon model is shown
in Table III.

In the k = 6 and k = 8 models, shown respectively in
Tables II and I, such a map between the substructures does
not exist, which means that all charges are distinct, i.e., j =
0, 1

2 , 1, 3
4 , 2, 5

2 , 3 for k = 6 and j = 0, 1
2 , 1, 3

4 , 2, 5
2 , 3, 7

2 , 4 for
k = 8. Inspecting the fusion tables shows that all of them
contain indefinite fusion products, which means that all of
the models have some charges transforming under a non-
abelian braid group. However, due to Theorems 2 and 3,
the models labeled by k = 2 (Ising) and k = 4 are nonuni-
versal, which means that their generator sets must be
supplemented with an additional gate in order to carry out
general purpose computation.
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