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Simulating the dynamics of quantum systems is an important application of quantum computers and
has seen a variety of implementations on current hardware. We show that by introducing quantum gates
implementing unitary transformations generated by the symmetries of the system, one can induce destruc-
tive interference between the errors from different steps of the simulation, effectively giving faster quantum
simulation by symmetry protection. We derive rigorous bounds on the error of a symmetry-protected simu-
lation algorithm and identify conditions for optimal symmetry protection. In particular, when the symmetry
transformations are chosen as powers of a unitary, the error of the algorithm is approximately projected
to the so-called quantum Zeno subspaces. We prove a bound on this approximation error, exponentially
improving a recent result of Burgarth, Facchi, Gramegna, and Pascazio. We apply the symmetry-protection
technique to the simulations of the XXZ Heisenberg interactions with local disorder and the Schwinger
model in quantum field theory. For both systems, the technique can reduce the simulation error by several
orders of magnitude over the unprotected simulation. Finally, we provide numerical evidence suggesting
that the technique can also protect simulation against other types of coherent, temporally correlated errors,
such as the 1/f noise commonly found in solid-state experiments.
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I. INTRODUCTION

Simulating the dynamics of quantum systems is a key
application of quantum computers. However, digitalizing
the continuous time evolutions to enable execution on
gate-based and other programmable quantum computers
comes with simulation errors that cause the dynamics of
the systems to deviate from ideal evolutions. In particular,
the errors may violate the symmetries in the target Hamil-
tonian for simulation, resulting in unphysical states at the
end of the simulations. This digitalization error particu-
larly affects Trotterization—the most common algorithm
for near-term quantum simulations [1-3]—and persists
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even in more sophisticated, advanced quantum-simulation
algorithms [4-6].

In this paper, we propose an approach, using the sym-
metries of a target Hamiltonian, to protect its simulated
dynamics against simulation errors. Given a simulation
algorithm that decomposes the dynamics of the system
into many small time steps (e.g., Trotterization), we inter-
weave the simulation with unitary transformations gen-
erated by the symmetries of the system (Fig. 1). While
these additional unitary transformations increase the gate
complexity of the simulation, the error of the simulation
can sometimes be reduced by several orders of magni-
tude, ultimately resulting in a faster quantum simulation. In
addition, depending on the symmetries, the unitary trans-
formations may be implemented using only single-qubit
gates, which are considered inexpensive for implementa-
tions on near-term quantum computers.

The symmetry-protection technique considered in this
paper is general and potentially applies to any algorithms
that simulate the time evolution of Hamiltonians with sym-
metries by splitting the evolution into many time segments,
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Symmetry protection

Simulation circuits

FIG. 1. For algorithms that simulate the dynamics of quantum
systems by decomposing the evolutions into many time steps, we
interweave the corresponding simulation circuits (blue) with uni-
tary transformations generated by the symmetries of the systems
(orange). These transformations protect the simulations against
errors that violate the symmetries, resulting in faster and more
accurate simulations.

including Trotterization and the higher-order product for-
mulas [4] and more advanced algorithms such as those
based on linear combinations of unitaries [5—8], Lieb-
Robinson bounds [9,10], and randomized compilations
[11,12]. We also provide evidence that the technique can
also protect the simulation against other types of tempo-
rally correlated errors, such as the 1/f noise commonly
found in solid-state devices [13].

In addition, we draw a connection between the
symmetry-protection technique and the quantum Zeno
effect [14-20]. In particular, the symmetry transforma-
tions, when chosen as powers of a unitary, approximately
project the error of simulation into the so-called quan-
tum Zeno subspaces, defined by the eigensubspaces of
the unitary. We prove a bound on the accuracy of this
approximation, exponentially improving a recent result of
Ref. [20].

The structure of the paper is as follows. In Sec. I, we
introduce the general technique and provides intuition for
the source of error reduction. In Sec. III, we derive a bound
on the error of Trotterization under symmetry protection.
In Sec. IV, we then benchmark the technique in simulating
the dynamics of systems with the Heisenberg interactions,
including the XXZ Heisenberg model with local disorder
that displays a transition between thermalized and many-
body localized phases, and in simulating the Schwinger
model in the context of lattice field theories. In particu-
lar, we show that interweaving the simulation with random
gauge transformations can significantly reduce the proba-
bility of a state leaking to outside the physical subspace
due to the simulation error, extending the results of Ref.
[21] to digital quantum simulation. We then demonstrate
in Sec. V how the technique may protect the simula-
tion against other types of coherent, temporally correlated
errors, such as the low-frequency noise typically found in

experiments. Finally, we discuss several open questions in
Sec. VL.

II. GENERAL FRAMEWORK

We consider the task of simulating the time dynamics
of a system under a time-independent Hamiltonian H. Let
U, = exp(—iHr) denote the evolution unitary generated by
H for time ¢. The symmetry-protection technique applies to
algorithms that simulate U; by first dividing the evolution
into many time steps (also known as Trotter steps), and
approximate the evolution within each time step by a series
of quantum gates. Examples of such algorithms include
most modern quantum-simulation algorithms from the
Suzuki-Trotter product formulas [4] to algorithms based
on linear combinations of unitaries [5—8]. In this paper, we
focus our theoretical analysis on the first-order Trotteriza-
tion algorithm for simplicity (Sec. III) and benchmark the
performance of symmetry protection on other algorithms
numerically (Sec. IV B). To be more precise, let 7 denote
the number of steps and §¢ = ¢/ denote the length of each
time step. These algorithms then simulate Uy, by a series
of elementary quantum gates S, i.¢.,

Uy = Us = S, e))

The approximation of Uy, by Ss; introduces an error that
is small for small §¢. However, errors typically accumu-
late after many Trotter steps, resulting in a total additive
error H U, — Sg,” that, in the worse case, scales linearly
with the number of Trotter steps r at fixed §¢. Equiva-
lently, for a fixed total time ¢, to reduce the total error, we
would have to decrease the Trotter-step size 8¢, effectively
increasing the number of Trotter steps 7, and thus require
more elementary quantum gates to run the simulation.

We refer to the simulation in Eq. (1) as the raw sim-
ulation. By exploiting symmetries of the system, we see
that we can substantially reduce the total error ¢ of the
simulation without significantly increasing the gate count,
ultimately resulting in faster quantum simulation for the
same total error budget. For that, we assume that the
Hamiltonian is invariant under a group of unitary trans-
formations, which we denote by S. Explicitly, we assume
that

[C,H]=0VCeS. )

The group S represents a symmetry of the system. Instead
of simply approximating Uj, by the circuit Sy, we “rotate”
each implementation of Ss; by a symmetry transformation
C, €S8 (i=k,...,r) so that the approximation in Eq. (1)
now reads

U, ~ [ CisuCr 3)
k=1
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We refer to Eq. (3) as a symmetry-protected (SP) simu-
lation. The right-hand side in Eq. (3) represents a circuit
that, at first, looks more expensive than Eq. (1) due to the
additional implementation of the transformations C;. How-
ever, for the same r, the total error in Eq. (3) could be much
smaller than Eq. (1). Effectively, to meet the same error tol-
erance, Eq. (3) may require a much smaller number of steps
r, and hence fewer implementations of Ss,, than the raw
approximation in Eq. (1). Moreover, because many sym-
metries—the gauge symmetries in lattice field theories,
for example—are spatially local, each C; only involves
a small number of nearest-neighboring qubits and can
be implemented easily in most architectures of quantum
computers. Other symmetries, such as the one responsi-
ble for the conservation of the total magnetization in the
Heisenberg model, are global but may be implemented as a
product of only single-qubit gates, which are usually much
“cheaper” to perform in experiments than their multiqubit
counterparts.

In the remainder of this section, we provide some intu-
ition, using lowest-order arguments, for the error reduction
in simulations under symmetry protection. We later derive
rigorous error bounds in Sec. II1.

A. Lowest-order arguments

To build an intuition for the symmetry protection,
we consider the effective Hamiltonian of the simulation.
The aim of digital quantum simulation is to simulate
the time evolution e~ of a Hamiltonian H. Assuming
that the simulation errors are coherent, we may end up
with the time evolution of a different Hamiltonian, say
H.g, that may be close but not the same as the targeted
Hamiltonian H:

—iHt ©rrors e*l’Heﬁ‘t — e*i(H+V)l’ (4)
where
V=Hg—H (5)

quantifies the difference between the effective and the
desired Hamiltonians [22]. We note that the effective
Hamiltonian, H.g, typically depends on the time step 6t
(see Lemma 1).

With Ss; = exp(—iHg5?) in Eq. (3), we can rewrite the
simulation as

r r
. i
1_[ C]LS&Ck — nefleHeﬂCkSZ
k k=1

r .
— 1_[ e*i(H+CkVCk)5t’ (6)
k=1

where we use the unitarity of Cj to move the unitaries to
the exponents and exploit the commutativity [Cy, H] = 0

from our assumption to simplify the expression. Assuming
that the error || V]| is small, we can use the Baker-Campbell-
Hausdorff (BCH) formula to combine the exponents in Eq.
(6) (to the leading order):

r "
1—[ o IHACVCBE o e—i(H+% Shot GVCE) _ e M (7)
k=1
Compared to the desired evolution e~, we can identify
the error of the entire simulation (ignoring the error from
the BCH approximation for now) as

-1 +
V=-)> CVC. 8
~ ) GG @®)

Roughly speaking, the error of the entire simulation, given
by Eq. (8), can be interpreted as the average of the error in
each step of the simulation. To illustrate the effect of the
symmetry protection, we could imagine V" as a vector in
the space of operators and CZ V'Cy is a version of the vector
rotated around an axis specified by Cy. The total error is
then analogous to a walker that, in each step, walks a dis-
tance ||V]| in the space of operators towards the direction
corresponding to Cy, (Fig. 2).

Without the symmetry protection (i.e., C; = I for all k),
the walker keeps walking in the same direction and its total
distance after r steps scales as O (r), resulting in the aver-
aged error || I_/H of the same order as || V]|. On the other
hand, under the symmetry protection, the walker walks in
a possibly different direction in each step, resulting in a
smaller total distance (and thus a smaller averaged error).

In particular, if the walker in each step walks towards
a uniformly random direction in the space of operators
(which is sometimes the result of choosing Cj at ran-
dom), its total distance should only scale as O (ﬁ I VII)
after r steps. The averaged error H I_/” would then scale
as O (|IVIl/+/r), decreasing with the number of steps of
the simulation. Additionally, if we could design a set of
optimal symmetry transformations that makes the walker
return to the origin after a fixed number of steps, we
would end up with a total distance that does not increase
with » and an averaged error || I7|| that decreases with »
as O (||[V]l/7). We derive rigorous bounds to support this
intuition in Sec. III.

The aim of the symmetry-protection technique is to
choose the symmetry transformations C; that minimize
the error in Eq. (8). While each C; may be chosen inde-
pendently of the others, we sometimes focus our attention
on a special construction that requires C; = C’(; for some
Co € S. This choice for the transformations result in a
simpler simulation circuit, i.e.,

U, ~ Cl (S5,Co), 9)
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(a) (b)

O(r).

FIG. 2. The total error of the simulation is analogous to the
average distance a walker walks in r steps of the simulation.
In each time step, the walker walks a small distance along a
vector representing the error operator in the space of operators.
(a) Without any symmetry protection, the walker keeps walking
towards almost the same direction, resulting in a total distance
that scales linearly with the number of steps 7, corresponding to
the total error scaling as O (1). (b) The symmetry transforma-
tions make the walker walk in a possibly different direction in
every time step. When the direction is uniformly random (see
Sec. IVA 1 and Fig. 3 for an example), the total distance only
scales as O (/7), resulting in the total error scaling as O (1/4/7).
(c) Sometimes, it is possible to design an optimal set of sym-
metry transformations that makes the walker return to the origin
[see Eq. (38) for an example], resulting in an O (1/r) error for
the entire simulation.

which corresponds to applying the same symmetry trans-
formation Cj alternatively with the implementations of the
simulating circuit Ss;, followed by a final application of
C(T)r to negate the effect of Cy on the correct evolution. We
could either draw Cj randomly from the symmetry group
S or infer an optimal choice of Cyy from the structure of the
error V [see Eq. (38) for an example]. We analyze the error
bounds for the simulation under the protection from this
special construction in Sec. I1I and present similar analysis
for the general scenario in Appendix C.

It is worth noting that the symmetry transformation Cy
introduced above is also analogous to the fast pulses (or
“kicks”) commonly used in quantum control to confine the
dynamics of quantum systems [14-20]. In fact, we also
show in Appendices A and B that a restricted version of
the symmetry-protection technique is exactly equivalent
to frequently applying fast pulses to the systems, result-
ing in the error being approximately projected onto the
so-called quantum Zeno subspaces. We prove a bound on
the error of this approximation, exponentially improving
a recent result of Ref. [20]. This quantum Zeno frame-
work provides an alternative explanation for how quantum
simulation can be improved by symmetry protection.

I1II. FASTER TROTTERIZATION BY SYMMETRY
PROTECTION

In this section, we analyze the effect of the symmetry
protection on the total error of the first-order Trotteriza-
tion algorithm. Suppose the Hamiltonian H = Zi:l H,
is a sum of L Hamiltonian terms /, such that each
e Mt can be readily simulated on quantum computers.
For readability, we define the following quantities,

L L
EZ Z [H,,H,] (10)

L L L
p=>" > Yl [m.a1]].  ap

pn=lv=p+1v/'=p

that depend only on the commutators between the terms
of the Hamiltonian. We also use the standard Bachmann-
Landau big-O and big-® notations in analyzing the asymp-
totic scalings of the errors with respect to n,¢, and r.
For reference, « = O (n) and 8 = O (n) in a system of n
nearest-neighbor interacting particles [22].

Given a set of symmetry transformations C = {Cj : k =
1,...,r}, we define

r

A= ; Y clag (12)

k=1

as the version of an operator 4 averaged over the rotations
induced by C;.

The first-order Trotterization algorithm approximates
exp(—iH §t) by

L
Sy = [ e, (13)

=1
where H;LFI U, = Ug...UyU is an ordered product. We

define H.g as the generator of Sy, i.e., Ss; = exp(—iH,gd1).
We prove the following lemma, providing the existence
and the structure of the generator Heg.

Lemma 1. For all §t such that Bt < «, 2aét < ||H||, and
88t||H|| < 1, there exists a generator Hug for Ss; and

Hyp=H — %vo& + V60, (14)

where

L L
EZ Z [H,,H,] (15)

V(81) is an operator satisfying |V (81)|| < x 8¢ and
x =B+ 32a|H|. (16)
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We provide the proof of Lemma 1 in Appendix D. The
essence of Lemma 1 is that the error of the simulation,
defined as V' = H — H, is given by

V= —%v05t+0(x512), (17)

and it follows that || V]| < (1/2)adt + x8¢>.

We now consider the effect of protecting the simulation
with a set of symmetry transformations {C; : k= 1,...,7}.
Under this symmetry protection, each circuit S, is replaced
by

i ) T
Sb‘t _ C]tSBICk — e—leHeﬂ‘Ck(St — e—l(H+CkVCk)8t, (18)

where we use [C, H] = 0 to simplify the expression. The
full simulation becomes

l_[ CZS(StCk — l_Ie_i(H+C]:VCk)8t' (19)
k=1

k=1

In the following analysis, we further assume that the sym-
metry transformations C; have the form C; = C’(j, where
Cy 1s a symmetry transformation drawn from the symme-
try group S. (We extend these results to general symmetry
transformations in Appendix C.) Let {e=™+ : 1 < u < m}
denote the distinct eigenvalues of Cy and

_ | R _
Hg=H+-Y CVC,=H+TV. (20)
r
k=1

Lemma 2. [fm > 2, we have

1_[ Czefinﬁﬁfck _ e*iﬁeﬁt
k=1
_ 28/mAH] £+ 1D IV £ logr
- r

. @D

where

-1

& = max
uFV

(22)

sin (¢M ; ¢v>

is the inverse spectral gap that depends on the eigenvalues
OfC().

The proof of Lemma 2 follows from Lemma 5 in
Appendix B. We note that the bound in Lemma 2 depends
on m, the number of unique eigenvalues of C;, which
could be a constant, e.g., when Cj is generated by local
symmetries, or depend on the system size, e.g., when C
corresponds to generic rotations generated by global sym-
metries. We also note that the inverse spectral gap & could

be large if Cy is nearly degenerate and one should take this
effect into account when choosing the unitary C.

Lemma 2 says that, up to the error given in Eq. (21),
the simulation under the symmetry protection is effec-
tively described by H . In particular, the total error of the
Hamiltonian under the symmetry protection is

o 1 &
V=Heff—H=;Zc,§Vck (23)
k=1
—i 1 1 — &
=== > ClueCr o+ -~ Y ava, (@24
k=1 k=1

=1y =V

where we replace the expression of V' from Lemma 1.
Note that HVH < ||V| by the triangle inequality. Using the
identity

He—iﬁeﬁz _ it

< |- H] 1= |7

|, (25)

we arrive at the following bound on the total error of the
simulation.

Theorem 1 (Quantum simulation by symmetry protec-
tion). Assuming that 86t < «, 2adt < ||H||, and 85t||H|| <
1, the total error of simulation under the symmetry
protection from {Cy = C’g :CoeS,k=1,...,r} can be
bounded as

[]CissC — e

&=
k=1
£ £logr
< ||lvoll =— — 26
< 1%l 3, + x5 g (26)
where
x =B +32|H|, k=48V/ma|H|, (27)

m is the number of distinct eigenvalues of Cy, and & is the
inverse spectral gap defined in Eq. (22).

The proof of Theorem 1 follows immediately from
Lemma 2 and Eq. (25) (see Appendix E for the detailed
calculations). The key feature of Theorem 1 is that, to the
lowest order in ¢/r, the error scales with ||vg| instead of
llvg]l. Since

(28)

| —

. +

Vol = —E C,voC
0ol H 1 Vol

is generally smaller than |lvy|| when [Cy,vg] # 0, we
expect a smaller simulation error under the symmetry
protection.
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For demonstration, we consider the simulation of a
Hamiltonian H that is a sum of nearest-neighbor interac-
tions on n particles. It is straightforward to verify that for
this Hamiltonian, ||H] = O (n), |lvll <a=0m), B =
O(m),and x =0 (nz). We also assume that the number
of distinct eigenvalues of the Cy is m = O (1) (corre-
sponding to local symmetries or highly degenerate trans-
formations), which results in x = O(nz). We estimate
the required number of steps »—a good proxy for the
gate count [23]—for simulations with and without the
symmetry protection.

The first scenario corresponds to an unprotected simula-
tion, where vy = vy. The total error then scales as

2
s:0<@)+0($12°gr). (29)

r

To meet a fixed-error tolerance &, we would have to choose
the number of steps r = O (nt?/¢).

On the other hand, with symmetry protection, we later
show that it is sometimes possible to make vy vanish
completely, making the higher-order terms the dominant
contribution to the total error [see Eq. (38) for an example].
For nearest-neighbor interactions, the total error is now

281
S (i) , (30)

72

which decreases quadratically with r. As a result, we need

only
y nt3/2
=0—, 31
' ( ﬁ) Gl

where ©(-) is ©(+) up to a logarithmic correction. Note that
this choice of r also satisfies the conditions in Theorem
1 when f/e > 1. Compared to the unprotected simula-
tion, the symmetry-protection results in a factor of /7/¢
improvement in the required number of steps. Ate = 0.01,
the improvement in the scaling with ¢ alone would result
in about a factor of 10 reduction in the gate count of the
simulation.

Finally, we consider a scenario where ||vg|l o< ||voll /7Y
for some y € (0,1). We provide an example of such a
scaling in Sec. IV A1, where drawing the unitary trans-
formations Cj randomly from the symmetry group results
in a scaling with y = 0.5. This scaling of || vp]| results in
the total error

nt? n*t logr
o(Z) o)

Hence, we require

which is again better than the unprotected simulation by a
factor of min{(nf?/&)?/1+V) /t/e}.

We recall that in deriving Theorem 1, we assume that
the symmetry transformations have the form C; = C’g for
some Cy. We derive in Appendix C a different bound for
the general case where each C; may be chosen indepen-
dently. This general bound, while appearing more compli-
cated, holds the same key feature to the bound in Theorem
1: the total error, to the lowest order, scales with an aver-
aged version of vy (under the symmetry transformations)
instead of scaling with ||vg]|.

IV. APPLICATIONS

In this section, we apply the symmetry-protection tech-
nique to the simulation of the Heisenberg model (Sec.
IV A) and lattice field theories (Sec. IV B). In both cases,
we show that the symmetry-protection results in a sig-
nificant error reduction and thereby gives faster quantum
simulation.

In particular, we use the simulation of the homoge-
neous Heisenberg model in Sec. IV A 1 to demonstrate the
improvement on the total error scaling as a function of the
number of steps » when the simulation is protected by a
random set of unitary transformations and by an optimally
chosen set. In Sec. IV A 2, we estimate the required number
of Trotter steps as a proxy for the gate count in simulat-
ing an instance of the Heisenberg model, commonly found
in the studies of the many-body localization phenomenon.
Finally, in Sec. IV B, we consider the probability of the
state leaking to unphysical subspaces in the digital simula-
tion of the Schwinger model and show that the symmetry
protection from the local gauge symmetries can suppress
this leakage by a few orders of magnitude.

A. Heisenberg interactions

In this section, we use the symmetries in the Heisenberg
model to protect its simulation using the first-order Trot-
terization. A Heisenberg model of # spins can be described
by the Hamiltonian

n—1 n
H=Y" 3 [J0xx + 00, +;22 |
i=1 j=i+1

+ 2”: hiZ;, (33)
i1

where X;,Y;,Z; are the Pauli matrices acting on site i,
Jij(.x’y ?) represent the interaction strengths between the
spins, and A; correspond to the strengths at site 7 of an
external magnetic field pointing in the z direction. The
Heisenberg model provides a good description for the
behavior of magnetic materials in the presence of external
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magnetic fields. Depending on several factors, includ-
ing the signs of the interactions and the dimensions of
the system, the Heisenberg model may undergo a quan-
tum phase transition as we increase the strength of the
external magnetic field. Several important instances of the
Heisenberg model includes the homogeneous Heisenberg
model [JY =J% =J@], the XXZ model [J® =J®]
with local disorder, and the Ising model [J*) = J©@ = 0].
In the following subsections, we consider two pedagogi-
cal instances of Eq. (33) with SU(2) and U(1) symmetries,
respectively, and demonstrate how the symmetry protec-
tion helps reduce the error in simulating the dynamics of
these systems even as they move across critical points.

1. Homogeneous, random Heisenberg interactions

We first consider a pedagogical toy model where inter-
actions in Eq. (33) are homogeneous, i.c., Jij('x) = J,;.y) =
J[j(.z) =J; for all 1 <i<j <mn, but each J; is chosen
independently at random between [—1, 1]. In addition, we

assume that 4; = 0 Vi, i.e., there is no external magnetic
field. In this case, Eq. (33) simplifies to

n—1 n n—1 n
H=Y Y JiXX+) Y Jny

i=1 j=i+1 i=1 j=i+1
=Hy =Hy
n—1 n
+Y D Iz (34)
i=1 j=i+1
=Hy

The combination of homogeneous interactions and no
external magnetic field make Eq. (34) invariant under S =
{(W®" . W e SU(2)}, which contains unitaries that—in the
Bloch sphere—simultaneously rotate each spin by the
same angle.

To simulate the evolution U; under Eq. (34), we could
use the first-order Trotterization to approximate

Ut — (e—iHBt)r ~ (e—iHX(Ste—iHy(ste—inﬁt)r (35)
by a product of evolutions of individual terms of the
Hamiltonian. The number of Trotter steps » and the time
step 6t = t/r determine the error of the simulation. We
refer to this approach as the raw Trotterization. To protect
this simulation, we insert unitaries drawn from the sym-
metry group S in between the Trotter steps, resulting in
the simulation

-
. - i . .
U = (e lHBt) ~ l_l CZe zHXzSte lHySle zHZzSzCk’ (36)
k=1

where {Cy,...,C,} = C is a subset of the symmetry group
S. Recall that the total error of this symmetry-protected

simulation is given by Theorem 1, with the lowest-order
error being

7

Z CIX Vo Ck
k=1

where vy = [Hy, Hy] + [Hz, Hy] + [Hz, Hy] comes from
the leading contribution to the error in one Trotter step.
Different choices of the set C lead to different total error of
the simulation.

For minimal calculational overhead, we could choose
each C; independently and uniformly at random from S
(i.e., Cy = W" where Wy is a Haar random unitary on
the single-qubit Bloch sphere). The sum in Eq. (37) is
then the sum of vy, each rotated under a random unitary.
This is analogous to the total error being a random walker
that, in each time step, “walks” a distance ||vy|| in a ran-
dom direction (see Fig. 2). From this analogy, we then
expect || vg]l o [lvoll /+/7 (to the lowest order). Therefore,
we expect the total error of this scheme to decrease with
as O (r~3/?) (at fixed total time 7).

While randomly choosing the unitary transformation set
C requires little to no knowledge about the error opera-
tor vy, one can expect that this choice of C is not optimal.
Indeed, by further exploiting the structure of vy, we can
construct a set of transformations C that makes Eq. (37)
vanishes entirely. One such choice is C; = C'(; for k =
1,...,r, where

t2
D m = & , 37
> llooll > (37)

(3%

and Uy is the single-qubit Hadamard matrix. Alternatively,
we could also write

I ifk=0 mod2
Cp = ’ 39
¢ {U;?; ifk=1 mod?2, (39)
for k=1,...,r. Since the Hadamard matrix switches

X < Z and Y < —7, it is straightforward to verify that
Eq. (37) vanishes for all even values of r. Therefore, the
total error of the simulation is given by the next lowest
order in Theorem 1, which scales with as O (1/72).

In Fig. 3, we plot the total error of the simulation at
n=4,t=1 as a function of the Trotter number r for the
three aforementioned scenarios: the first-order Trotteriza-
tion without symmetry protection (“Raw”), with symmetry
protection from a randomly chosen C (“SP-Rand”), and
with symmetry protection from the optimal set C (“SP-
Det”). The scalings of the errors as functions of » agree
remarkably well with our above prediction. In addition,
we also compute the total error using the randomized
simulation scheme in Ref. [12], which decreases the Trot-
ter error by randomizing the ordering of the Hamiltonian
terms in between Trotter steps. Our numerics shows that
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FIG. 3. The total error in simulating the Hamiltonian Eq. (34)

at n =4 for a fixed evolution time 7 =1 as a function of the
Trotter number 7 using four different schemes: the raw first-order
Trotterization (“Raw”), the first-order Trotterization protected by
a random set symmetry transformation (“SP-Rand”), the first-
order Trotterization protected by the optimal set in Eq. (38) (“SP-
Det”), and the random-ordering scheme in Ref. [12] (“Random
Ordering”). We indicate the scalings obtained from power-law
fits to the right of the plot. We repeat the simulation 100 times,
each with a different set of randomly generated interactions Jj; .
The dots correspond to the median of the errors at each value of
r and the bars represent the corresponding 25%—75% percentiles
regions.

this scheme performs similarly to the simulation protected
by random symmetry transformations, which are both
outperformed by the optimal symmetry-protection scheme.

2. Many-body localization

The homogeneous Heisenberg interactions without
external fields considered in the previous section provides
a good testbed for benchmarking the symmetry-protection
technique. In this section, we consider a more physically
relevant instance of the Heisenberg model:

H=Y 5501+ 3 0, (40)
i=1 i=1

where we again assume homogeneity for the coupling
strengths, but J; = 1 only when i,j are nearest neigh-
bors and J; = 0 otherwise. We also adopt the periodic
boundary condition and identify the (n + 1)th qubit as the
first qubit. In addition, we add an external magnetic field
with the field strength #;, each chosen randomly between
[—#, h]. This model describes homogeneous Heisenberg
interactions with a tunable local disorder strength /. At
low disorder 4, the system evolved under Eq. (40) thermal-
izes in the long-time limit, in agreement with the eigenstate
thermalization hypothesis (ETH). However, as / increases,
the system transitions to a many-body localized (MBL)
phase where it no longer thermalizes (see Ref. [24] for a
review of the many-body localization phenomenon.)

To simulate the dynamics of H, we again divide the
terms of H into groups of mutually commuting terms:

H=Y) XX+ ) Yi¥ia+) ZiZii+ ) hiZ,
i=1 i=1 i=1 i=1

—_——— ———
=Hy =Hy =Hy

(41)

and use the first-order Trotterization similarly to Eq.
(35). To symmetry protect this simulation, we note
that the field term breaks the SU(2) symmetry of the
Heisenberg interactions, leaving the system invariant
under a U(1) symmetry only. The symmetry group S =
{[exp(—i¢Z)]®" 1 ¢ €0, 271)} is generated by the total
spin components along the z axis S, = Y | Z..

While selecting the unitary transformations Cj from
this U(1) symmetry is no longer sufficient to completely
eliminate the lowest-order error—as we have done in the
previous section—we can still expect significantly reduc-
tion of the total error due to the symmetry protection
and thus a lower gate count for the simulation. In Fig.
4, we plot the number of Trotter steps » in simulating
the dynamics of Eq. (40) for time ¢ = n at different val-
ues of the disorder / that correspond to the ETH and the
MBL phases. The required numbers of steps are com-
puted at each n by binary searching for the minimum r
such that the total error of the simulation does not exceed
¢ = 0.01. Figure 4 shows that protecting the simulation
with the U(1) symmetry results in several times reduc-
tion in the number of Trotter steps for all values of n.
In addition, the Trotter number under symmetry protec-
tion also appears to scale better with the system size than
in the raw simulation, suggesting an even greater advan-
tage from the symmetry protection for simulating larger
systems.

Out of curiosity, we study how the symmetry protection
performs as the Hamiltonian moves across the ETH-MBL
phase transition. In Fig. 5, we plot the required num-
ber of steps » in simulating the Hamiltonian of n =8
qubits for time 7 = n and error tolerance ¢ = 0.01 as we
tune the Hamiltonian from the ETH to the MBL phase
[25]. The improvement due to the symmetry protection
appears to be unaffected by the phase transition, suggest-
ing that the symmetry-protection technique can be use-
ful for future numerical and experimental studies of the
transition.

B. Simulation of lattice gauge-field theories

Quantum field theories provide another key target for
quantum simulation [26]. In particular, the quantum sim-
ulation of real-time Hamiltonian dynamics, for example
scattering processes [27], has attracted much attention.
An important class of field theories are models with
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FIG. 4. The number of Trotter steps required for the simulation of z qubits evolved under Eq. (40) for time ¢ = n to meet a fixed-error
tolerance ¢ = 0.01. We compare this Trotter number of a simulation without any symmetry protection (“Raw”, blue) and a simulation
with random symmetry protection (“SP”, orange) at # = 2 (left panel) and & = 8 (right panel), which correspond to the system being
in the ETH and the MBL, respectively. The dashed lines are the linear fits of the data in the log-log scale. The simulation is repeated
100 times with different instance of the disorder 4;. The dots represent the median of the Trotter number at each » and the error bars
correspond to the 25%—75% percentile region. The numerics show that symmetry protecting the simulation reduces the number of
Trotter steps, and hence the gate count, by about 2 to 4 times in both the ETH and the MBL phases.

local gauge symmetry, including quantum electrodynam-
ics, chromodynamics, and the Standard Model of parti-
cle physics in addition to many condensed-matter sys-
tems. Substantial effort has gone into the study of analog
[28-30] and digital [31-35] quantum simulation of these
models.

In a gauge theory, the system is invariant under a sym-
metry group that acts separately at each point in space and
time (see, e.g., Ref. [36] for a review, as well as the lattice
Hamiltonian formulation, of these models). This symme-
try is fundamentally a redundancy of our description of
the physics, which we introduce to give a local descrip-
tion. The Hilbert space H we use to describe the system

~ 25000 . ]
- o Raw
%
% 20000} ..° e SP
e .
8 15000F
i
B 10000} !
= ETH Transition MBL
g 5000
j=]
z,
0 L
0 2 4 6 8 10
Disorder strength h
FIG. 5. The required number of Trotter steps in simulating the

Hamiltonian Eq. (40) of n = 8 qubits for time ¢ = n as a function
of the disorder strength in an unprotected simulation (“Raw”,
blue) and in a symmetry-protected simulation (“SP”, orange).
Each dot represents the median Trotter number over 100 differ-
ent instances of the random fields. The bars correspond to the
25%—75% percentile region.

contains a subspace Hnys of the physical states, those
annihilated by the gauge constraints. For example, in elec-
trodynamics, we have the charge- and gauge-field degrees
of freedom, and the physical states are those annihilated by
the Gauss-law constraint G = V - E — p, where E is the
electric field operator and p is the charge density oper-
ator. There are many states in the full Hilbert space H,
which do not live in the kernel of G, and these states
are not allowed in nature. Although one can in principle
work with a description strictly within the physical Hilbert
space, it is in general computationally difficult to do the
reduction. More importantly, this description would neces-
sarily have a highly spatially nonlocal set of interactions, a
major drawback in practice.

Thus in the simulation of a gauge theory we are faced
with a fundamental source of possible errors: what if our
dynamics takes us away from the physical Hilbert space?
Although the exact Hamiltonian commutes with the gauge
constraints, and thus leaves the physical space invariant,
an approximate (for example, Trotterized) version of the
Hamiltonian may induce leakage into the unphysical space
[21,35]. In this section, we apply the symmetry-protection
technique and use the gauge symmetry itself to protect the
simulation against this undesirable leakage [37].

Explicitly, we consider the one-dimensional Schwinger
model [34,35,38-41] consisting of n sites and n — 1
nearest-neighbor links between the sites. We use the for-
malism outlined in Ref. [35]. The Hamiltonian H = Hy +
H, consists of two terms:

n

n—1
Hy=Y F? - % Y -1z,
i=1

i=1

(42)
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n—1
1
Hy=x)" [Z(Ui + UDXiXis1 + Yi¥ig1)
i=1

i f
+ Z((]i - U)XYo — YiAXH—])j|: (43)

where
A-1
Fi= Y jli il (44)
j=—A
A2
U= i+ 1L+ 1=AN (A =1, @5
j=—A

and u,x are positive constants. Here, H, describes the
on-site and on-link terms, H; describes the site-link inter-
action, and F; is the electromagnetic field operator for the
link that connects the ith and (i 4+ 1)th particles. We note
that while the second term in Eq. (42) sometimes appears
in the literature without the minus sign (see, for example,
Ref. [34]), this discrepancy is the result of different con-
ventions for mapping between fermions and spins and does
not have any physical consequences. In a simulation, we
have to put a cutoff A specifying the maximum excitation
number for the bosonic degree of freedom on a given link.

The Hamiltonian is subjected to local symmetries gen-
erated by the gauge operators:

G =F—-Fi_—0, (46)

where Q; = 1/2 [—Zi + (—l)i] counts the electric charge
at site 7. In particular, only states |i/) that satisfy G; = 0
for all i are considered physical.

The physical states form a subspace Hypys, which can be
constructed from the kernels of the gauge operators:

thys = NiKer(Gy), (47)

where Ker(G;) = {|¢) : Gi|¢) = 0} is the kernel of G;.

Due to various errors, an initially physical state may leak
to unphysical subspace during the simulation. Formally,
we define the leakage of a state |y (7)) at time ¢ as

1 =[O oly @)1, (43)

where I1 is the projector onto the physical subspace H nys.

To simulate e#% for a small time 8¢, we first decom-
pose it into e~ #03"e=iH1% ysing the first-order Trotteriza-
tion. Since both Hy, H; commute with G;, this decompo-
sition respects the gauge symmetries and does not result
in leakage from the physical subspace. However, to simu-
late the evolution under H;, we need to further decompose

it into elementary quantum gates. For that, we follow the
steps in Ref. [35] and write

Ui+ U =4, + 4, (49)
where 4, =1Q ---I®X andzzl,» = UlTAilJi. Similarly,
i(U; — U)) = B; + By, (50)

where B;=1® ---®1® Yand B; = UjBiU,-. This repre-
sentation allows us to decompose the evolution

e—lHo(Sle—lHl(St ~ S(S[ = e—;[—[ogt
11 o HESAX X1 o= GEXSIA X X 1
i
o A Yig1 pm XS Y Vi
. e*%ix‘S’BiXiYiHe*%iX&Bz‘XiYiH
1. 1. 0.5
ZIx8tB; YiX; LivstB: Y:X:
_e+4zx it 1+1e+4lx YiXigr (51)

into a product of three-qubit gates that can be readily
implemented on quantum computers [35]. Note that the

Xit1 s that of approximating
+1_plus the cost of implementing U, U;r:

cost of simulating e~ (1/4)x4:X;
o~ (/A4 XiX;

LSt XX t LS XX,
o~ T X U'e g AKXy 1 (52)

The entire raw first-order Trotterization simulation of e~
becomes

et~ St (53)

Similarly to the Heisenberg model, we could protect this
simulation by interweaving the Trotter steps with symme-
try transformations of the system:

e ~ [T ClssCr (54)
k=1

where C;, are generated by the gauge operators in Eq. (46).
Specifically, we choose

Cr = [ [ exp(—idniG) (55)

i=1

for some angles ¢ ;.

Since we truncate the spectrum of each bosonic link
to [—A + 1, A], the transformations Cj in general com-
mute with the Hamiltonian of the system only if we choose
Ori = my /A, where my; are integers. These transforma-
tions effectively form a Z,;, symmetry of the truncated
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FIG. 6. The probability for the final state to leak outside
the physical subspace due to Trotter errors in simulating the
Schwinger model. We consider simulations without symmetry
protection (blue) and with symmetry protection under different
schemes: uniform sets of transformations drawn from Zg (red)
and U(1) (orange) and random sets of transformations drawn
from Zg (purple) and U(1) (green). The purple and green areas
overlap each other almost completely. The dots correspond to
the median and the shaded areas correspond to the 25%—75%
percentile of 100 repetitions.

Hamiltonian [42,43]. However, the U(1) symmetry can be
recovered by assuming a vanishing background field and
choosing a large enough cutoff level A such that, in the
physical subspace, the bosonic links never “see” the cut-
off. More rigorously, if A > n/2 + 1, the transformations
Cj, commute with IToH Iy, where Iy is the projection onto
the physical subspace Hys, for all angles ¢; € [0,27).

In Fig. 6, we plot the leakage outside the physical sub-
space due to the Trotter error during simulations with and
without symmetry protection. Specifically, we simulate the
evolution of the ground state of the Schwinger model with
four sites and three links at x = 0.6, u = 0.1, 8¢ = 0.01,
and A = 4. This choice of A ensures that the Hamilto-
nian has a Zg symmetry in general and a U(1) symmetry
when restricted to the physical subspace. We consider
two choices of the angles ¢y ;: ¢r; = k¢p1; (“Uniform”),
for some randomly chosen ¢, ;, and ¢;; chosen indepen-
dently at random for each £ (“Random”). We repeat the
simulation 100 times, each with a different choice of the
angles.

Figure 6 shows that the symmetry protection can reduce
the leakage to the unphysical subspace by several orders
of magnitude compared to a raw simulation. While the
leakage builds up in a raw simulation, the uniform choice
of the transformations from the U(1) symmetry results in
bounded leakage during the entire simulation. This feature
resembles the optimal symmetry protection discussed in
Sec. IVA1 for the Heisenberg models, where the sym-
metry protection suppresses the simulation error nearly
completely. Different choices of the symmetry transfor-
mations also affect performance of the scheme differently.
While the random choices of transformations from Zg and
U(1) have the same effect on the leakage, the uniform

choice of transformations from Zg performs significantly
worse than the U(1) counterpart. This discrepancy is likely
because we have only eight choices for the Zg symme-
try transformations, whereas with the U(1) symmetry the
number of choices is theoretically infinite. Effectively, the
symmetry group Zsg has less freedom and, therefore, is less
effective in averaging out the simulation error than U(1).

While our analysis in Sec. III focuses on the application
to the first-order Trotterization algorithm, it is clear from
the analysis that the symmetry protection will suppress
any simulation errors that violate the symmetries of the
system, including errors from more advanced algorithms.
To support this claim, we provide in Fig. 7 numerical
evidence of the symmetry protection suppressing the leak-
age to unphysical subspace in simulating the Schwinger
model using the second-order Suzuki-Trotter formula,
the fourth-order Suzuki-Trotter formula [4], and a mul-
tiproduct formula implemented via a linear combination
of unitaries [7].

Given a Hamiltonian H = ZLIH,, is a sum of L
terms, the second-order Suzuki-Trotter formula simulates
the time evolution e~#% by

L 1
Py = e ™% -TTe ™%, (56)
v=I v=L

which is correct up to an O (813 ) error. The formula can be
generalized to any even order p > 2 through a recursive
construction [4]:

P, (81) = Pp_2(k,80*Pp o [(1 — 4,)81)P, 2 (i, 1),
(57)

where «, = 1/(4 — 4!/7). The pth-order formula approx-
imates e~ % up to an error O (§#*"'). Given a small &,
the formulas can be made arbitrarily accurate by increas-
ing p at the cost of increasing the gate count exponentially
with p.

In contrast, multiproduct formulas [44] enable the con-
struction of any pth-order approximations using only
poly(p) quantum gates by approximating the time evolu-
tion by sums of product formulas. Asymptotically, the gate
counts of the multiproduct formulas have polylogarithmic
dependence on the inverse of the error tolerance. There-
fore, when used as a subroutine in the Lieb-Robinson-
bound-based algorithm [9], the multiproduct formulas also
result in asymptotically optimal gate counts, up to poly-
logarithmic corrections, in simulating geometrically local
systems. Because a sum of product formulas is gener-
ally not unitary, it must be implemented using techniques
such as linear combinations of unitaries (LCU) [7], which
encodes the multiproduct formula into a unitary acting in
a larger Hilbert space. Here, we simulate the Schwinger
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FIG. 7. The leakage to the unphysical subspace as a func-
tion of time in simulating the Schwinger model using advanced
algorithms. We consider a raw simulation (blue), a simulation
protected by a random set of transformations drawn from the
U(1) symmetry group (green), and a simulation protected by
a uniform set of transformations (orange). The solid dots cor-
respond to the median of 100 repetitions and the shaded area
corresponds to the 25%—75% percentile.

model using a multiproduct formula constructed by Childs
and Wiebe [7]:

16 1
M) = E1%(5;/4)4 — T5Pa000), (58)

which is a linear combination of two second-order product
formulas.

Figure 7 plots the leakage to the unphysical subspace
during the simulation at n =4,x =0.6,u = 0.1,5¢ =
0.01, and A =4 using the second-order Suzuki-Trotter
formula, the fourth-order Suzuki-Trotter formula, and the

multiproduct formula [Eq. (58)] with and and without sym-
metry protection. We implement the multiproduct formula
using LCU and an additional ancillary qubit. For the con-
sidered algorithms, the numerics show similar features
to Fig. 6, where the symmetry protection suppresses the
leakage by several orders of magnitude and, in particular,
the uniform choice of transformations results in bounded
errors throughout the simulation. The figure therefore
demonstrates the generality of our approach in protect-
ing digital quantum simulations against errors that violate
symmetries of the target system. We note that the dips in
the leakage of the raw simulations are likely due to the
small system size considered in the simulations.

V. ADDITIONAL PROTECTION AGAINST
EXPERIMENTAL ERRORS

So far, we demonstrate that symmetries in quantum sys-
tems can be used to suppress the simulation error of the
Trotterization algorithm. In this section, we discuss how
the technique may also protect the simulation against other
types of error, including the experimental errors that may
arise in the implementation of Trotterization.

In our earlier derivation, we show that the lowest-order
contribution to the total error is

Z C}: Vo Ck
k=1

where vy is the lowest-order error from the simulation
algorithm. This derivation applies equally well for the
case when the error vy comes from sources other than the
approximations in the simulation algorithms.

However, in our analysis, we require that vy remains
the same for different steps of the simulation. In other
words, the error v, for different Trotter steps are correlated
in time. In particular, an error with temporal correlation
lengths being longer than the time step 8¢ would enable
us to choose the symmetry transformations such that the
errors from several consecutive steps interfere destruc-
tively. Therefore, we expect the symmetry-protection tech-
nique to help reduce low-frequency noises, such as the 1/f
noise typically found in solid-state qubit systems.

We provide numerical evidence for this argument by
adding temporally correlated errors to the simulation of
the Schwinger model. Specifically, after each step k& of the
simulation, we apply single-qubit rotations exp(—in o - i)
on the system, where n = 0.01 is a small angle, around
a random axis 7. These rotations mimic the effect of a
depolarizing channel and violate the gauge symmetries,
resulting in the state leaking to the unphysical subspace.
To impart temporal correlations into this noise model, we
choose the random unit vectors 7; again only after every A
consecutive Trotter steps. The parameter A therefore plays
the role of the correlation length of the noise.

_ 1
llvoll = —
-

; (59)
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In Fig. 8, we plot the probability that the state leaks
to unphysical subspace (due to the simulation error) as
a function of time for several values of the correlation
length A. To study the effect of the symmetry-protection
technique on the added experimental noise, we use the
fourth-order Trotterization in the simulation to suppress
the algorithm error, making the added noise the main con-
tributor to the leakage observed in Fig. 8. As expected, at
A =1, the experimental error varies too fast between Trot-
ter steps and is immune against the symmetry-protection
technique. However, the technique begins to suppress the
experimental error as soon as the noise becomes tempo-
rally correlated (A > 1) and becomes more effective as the
correlation length X increases. Even at A = 4, we manage
to reduce error by about an order of magnitude.

VI. DISCUSSION AND OUTLOOK

In this paper, we propose a general technique to sup-
press the error of quantum simulation using the symmetries
available in quantum systems, ultimately resulting in faster
digital quantum simulation. We analyze the technique
when applied to the Trotterization algorithm and derive
bounds on the total error of the simulation under symme-
try protection. The bound provides insights for choosing
the set of unitary transformations that optimally suppress
the simulation error. We then benchmark the technique
in simulating the Heisenberg model and lattice field theo-
ries. Both examples showed that the symmetry-protection
results in significant reduction in the total error, and thus
the gate count, of the simulation. Finally, we argue that
the technique can also protect digital quantum simulation
against temporally correlated noise in experiments.

An immediate future direction is to generalize the anal-
ysis in this paper to more advanced quantum-simulation
algorithms, such as the higher-order Suzuki-Trotter for-
mulas [4], the truncated Taylor series [5], or qubitization

[6]. We emphasize that our approach induces destructive
interference between the errors from different steps of the
simulation and, therefore, should suppress errors that vio-
late the symmetries of the target system, regardless of
the sources of the errors. However, the optimal choice of
the symmetry transformations depends on the exact error
structure in each step of the simulation. Since the error
structures of more advanced algorithms are typically more
complicated than the first-order Trotterization, it is more
difficult to infer the set of symmetry transformations that
optimally protects the simulation. Nevertheless, extensive
analytical and numerical studies of the effectiveness of
the technique for protecting these advanced algorithms,
especially when applied to the simulations of various phys-
ically relevant systems, such as the lattice field theories
[31-33], or the electronic structures [45-48], would be
useful for the long-term development of digital quantum
simulation.

When the error structure of the algorithm is not readily
available, an alternative promising approach for optimiz-
ing the set of symmetry transformations is to parameterize
the transformations, variationally minimize the error of the
first few simulation steps, and apply the same set of trans-
formations repeatedly for the rest of the simulation [49].
Understanding when such a variational approach can sup-
press the error in a long simulation could provide a path
towards a scalable symmetry protection with a minimal
calculation overhead.

In addition, our analysis in this paper focuses primarily
on the error of the simulation algorithm under the sym-
metry protection in the full Hilbert space. It would be
interesting to, for example, build upon the recent result of
Ref. [50] and analyze the symmetry-protected simulation
error in a low-energy subspace.

Lastly, we note that, although our analysis focuses
on digital quantum simulation, we expect the symmetry-
protection technique to apply equally well for analog
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quantum simulation and classical simulation of the dynam-
ics of quantum systems.
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APPENDIX A: FASTER CONVERGENCE OF
QUANTUM ZENO EFFECT

Using symmetries to protect quantum simulations has
previously been explored in the context of the quantum
Zeno effect: undesirable errors from the simulation can
be suppressed by constantly measuring the system in an
appropriate basis [14,21,52]. However, measurements are
costly in most available quantum computers and therefore
often performed only once at the end in simulations on
quantum computers. An alternative approach commonly
used in quantum control is to frequently apply fast pulses,
or “kicks,” to the system during the experiments. In the
high-frequency limit, these kicks confine the dynamics
of the system to the so-called quantum Zeno subspaces
defined by the spectral decomposition of the kicks [14-20],
effectively realizing the quantum Zeno effect without mea-
suring the systems.

In this section, we derive a concrete bound on the rate
at which the effective Hamiltonian of a frequently kicked

system converges to its projection to the Zeno subspaces.
This bound exponentially improves a recent result of Bur-
garth, Facchi, Gramegna, and Pascazio [20]. Interestingly,
our proof makes use of a tight analysis of Trotter error [22],
suggesting a deep connection between quantum simulation
and quantum Zeno effect.

The aim of quantum control is to confine the dynam-
ics of a system evolving under a Hamiltonian G into the
subspaces specified by a set of projectors:

P = {Pu}. (A1)

One approach is to repeatedly measure the system in the
basis corresponding to P throughout the evolution. These
measurements results in the quantum Zeno effect: the
dynamics of the system is confined to the subspaces cor-
responding to the projectors P,. Alternative to measuring
the system, one could periodically “kick” the system [20]
with a unitary

Ukick = Zefilp“Pu,

n

(A2)

where ¢, is chosen such that ¢, # ¢, mod 27 for all
W F V.

Suppose the total evolution time is ¢ and we apply the
kick every 6¢ = t/r, where r is an integer. The dynamics of
the system becomes

(Uzick)r (e_th/ ' Ukick)r , (A3)

where (UZi )" 1s added at the end of the sequence to undo
the evolution generated by the r applications of Uc.
In the limit » — oo, the dynamics of the system again
exhibits the quantum Zeno effect

B
ir e —itG
Ukick (e r Ukick) — e "PZeno,

(A4)

where

m
Gzeno = ZPMGP;u
n=1

(AS5)

is the projection of G onto the subspaces defined by the
spectral decomposition of Uy;ck. In other words, the kicks
effectively confine the dynamics of the system to the
subspaces defined by the projectors P, (see Fig. 9).
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FIG. 9. The frequent kicks confine the dynamics of the system
(solid arrows) to the so-called quantum Zeno subspaces, defined
by the projectors P, in the spectral decomposition of the kicks
Ukick = Y u e”"’bﬂPu. In particular, the kicks suppress the prob-
ability for the system to travel between the subspaces (dashed
arrow). By generating the kicks from the symmetries of the sys-
tem, we can target the simulation erro—the sole contributor to
possible violations of the symmetries in an ideal simulation—for
suppression.

Ref. [20, (A.30)] derived the following bound on the
convergence rate with explicit dependence on all param-
eters of interest

—itg\" —i
H Uy (Ukicke er) — ¢ "1Gzeno

_ Em?||GI| (1 + 219y

(A6)
r
where m is the number of projectors and
. ¢v - ¢,u> -
= max |sin | ————— A7
¢ = may ( . (A7)

is the inverse spectral gap. Unfortunately, this bound has
exponential dependence on m, ||G||, and ¢, which, in par-
ticular, suggests that we have to increase the number of
kicks » exponentially with the evolution time of the system
and therefore may be impractical in many applications. In
Theorem 2, we prove a different bound that exponentially
improves the bound in Ref. [20] in terms of m, ||G]||, and z.

Theorem 2 (Faster convergence of quantum Zeno effect).
Let Uyicx be the unitary defined in Eq. (A2) with m distinct
eigenvalues, inverse spectral gap &, and a set of orthog-
onal projectors {P,}. Let Gzeno = ), PGP, denote the
projection of a Hamiltonian G onto the subspaces defined

by {P.}. We have

EZeno = H Ultirck (Ukicke*i%G) — e*itGZeno
- 26/m ||G|I* £ logr N £Jm |G|t
< - p
2
- 36 /m |G| tzlogr. A8)
r

To prove Theorem 2, we rewrite the evolution as
Ulia, (eil%GUkick)r = ¢ 1 0re 101 LT (A9)

where we define
G = UIZCckGUiick‘

(A10)

Letting Gp1,0 = G + - - - + G, the first step of our proof
is to establish the error bound

26 /m |GI # log r

(All)

.t -t s
He—l;Gr ce G e—l;G[l,r]‘ <

This is the spectral-norm error of the first-order Trotter for-
mula [22]. However, a naive error analysis in terms of the
commutators between G; (see Ref. [22, Proposition 15],
for example) gives a bound that does not decrease with »
and thus fails to establish the desirable bound. Instead, we
seek a better analysis that exploits the spectral information
of Ukiek [20].

The starting point of our analysis is the established von
Neumann’s ergodic theorem whose proof is included for
completeness.

Theorem 3 (von Neumann’s ergodic theorem). Let U be
a unitary operator and U = Z:’Zzl e~ %np, be its spectral
decomposition, with ¢, = 0 and ¢,, distinct. Then,

1 r
Isvpgop| <8 (A12)
r k=1
where
-1
g = 2max|e® — 1] = max|sin(2)| . (A13)
v#£] v#£1 2
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Proof. The bound follows from

1 r 1 r m
yeen-|(tnv-n) e
"= "=t v=1
1 m r
|t e
v=1 k=1
1—e v
v;él
1 1 — e irdv &
= —max . =. (Al4
rovEl |1 —e v | T p (Ald)
[ |

We note that the condition ¢; = 0 is not restrictive as
we can always make ¢; = 0 by adding a global phase to
Ukick [16].

Corollary 1. Let U be a unitary operator and U =
Z::l:l e~ %up, be its spectral decomposition. Then, for any
operator G,

1 r m G
=Y UGUF =) P,GP,| < Sy/mIGl, (A15)
e = r

where

-1

i, 1—1
& —2max|e B _ 7|7 = max
HFY uFv

sin (—¢V _ ¢”>
2

(A16)

Proof. The claimed bound follows from

% Z UGU — iP,LGPu
— n=I1

= %Z U'GU* — Xm:PMGPM iPu
=1 n=1 v=1
(€ v)* P, — Zm:PUGPV

v=1 k=1 v=1

2

-y (e#U)* GP, — PGP,
k=1

i[~]

r

1 . k
— idy —
p Y (f7U) -p

k=1

< /m |G| max < M,
v r

(A17)

where the first inequality follows from the bound

f

m m
(Z A,,PU) ZAMPM
v=1 u=1

- iAvPvAI
v=1

(A18)

m
D 14,
v=1

As aforementioned, a naive analysis of the Trotter error
fails to provide the desirable bound for quantum Zeno
effect. Instead, we use a recursive approach to estimate the
Trotter error Eq. (A11).

Lemma 3. Define Gy = Y5y Gi for ko < k. For
any s > 1 and §t, we have

—iGét e_iG[l,s]‘St

< 2&/m | G|? 8fslog, s.

(A19)

Note that at s = » and 8¢ = ¢/r, Lemma 3 reduces to Eq.
(A11). We prove Lemma 3 by induction on s. Suppose
Lemma 3 holds for s = 51 and s = s, such that |s; — 51| <
1, we shall prove that it holds for s = s 4 5. Using the
triangle inequality

S1+s2
1_[ e—inzSt _ e*iG[l’Sl_*_Sz]St
k=1
s
< Hefin(Sf _ e_iG[1~»*1]‘3’
k=1
s1+s2
+ 1_[ e—in(St _ e_iG[31+1s51+52]8’
k=s1+1
+ ‘ e 1051 +52180 _ 5 1Gsy 41,51 45181 g =1G 1,518 (A20)
2
< 26/m||G|* 3£ (s1 log, 51 + 52 log, 52)
1
+ 3 Gt +151400, G ][ 87, (A21)

where we use the inductive hypothesis and the Trotter error
bound [22, Eq. (143)] in the last inequality. To bound the
commutator norm, we use the following lemma.
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Lemma 4. For any ky < ky,jo <ji, we have

” [G[koﬁkllﬁ G[ioJl]] H <20 —jo+hk —ko+2)E/m G2 (A22)
Proof- We have
[ K J1
|[Grozkzt- Ginzi =i ]| = | | D2 G DG
| k=ko =0
[ K J1 m
< ZGk,ZGj_(il_jO+1)ZPMGPM
| k=ko =0 n=1
k1 m m
+ | D Gi— =k +1) Y PuGP,, Gy —jo+ 1Y PuGP,
k=ko n=1 n=1
< 2(ki — ko + D IGI (5¥/m IGIl) 4+ 2 (E/m IGI) Gi —jo + D Gl
=201 + ki —jo — ko + 2)E/m | GII>,
where we use Corollary 1 to prove the second inequality. Therefore, the lemma follows. ]

Applying Lemma 4 to Eq. (A21), we have

NERY)
l_[ e*inﬁt _efiG[l,lerxz]Bt
k=1
< (251 log, 51 + 253 log, 53 + 51 + $2)E/m |G| 87

(A23)

We now apply the above equation repeatedly to prove
Lemma 3. Note that Lemma 3 holds trivially for s = 1.
Suppose that it holds for all s < sy for some sy > 1. We
shall prove that it holds for s = s + 1.

First, we consider the case where s is even, i.e., there
exists an integer / > 1 such that s = 2/. Applying Eq.
(A23) with s; = 5, = [, we get

s

He—in5t _ e_iG[l,S]L‘it

k=1
< (2llog, [ + 2llog, I 4+ 1 + DE/m ||G||* 8 (A24)

= [2slog,(s/2) + s]&/m |G|)* 87 (A25)

< 2slog, s £5/m ||G||* 8¢ (A26)

Therefore, Lemma 3 holds if s is even.

(

When s is odd, there exists an integer / > 1 such that
s =21+ 1. Applying Lemma 3 with s; = [and s, = [+ 1,
we have

s
He—in5t _ e_iG[l,s]St
k=1

< [201ogy [+ 2(I+ 1) log,(I 4 1) + 21 + 1]6/m
x |G| 8£. (A27)

Let

gx) =2xlogyx +2(x + 1) log,(x + 1) +2x + 1

—22x+ D log,(2x + 1). (A28)
It is straightforward to verify that g(1) < 0 and
2x(1 4+ x)
'(x) =2log, ———— <0 A29
g (x) 0g; (1 + 2x)2 < ( )

for all x > 1. Therefore, g(x) < 0 for all x > 1. Applying
this bound to Eq. (A27), we get

N
l_le—in(St _ e_iG[l,S]SI
k=1

<220+ Dlog,(2l+ DEV/m||G|* 87 (A30)
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= 2s5log, s £/m||G|* 8. (A31)
Thus, Lemma 3 holds for odd s too. By induction,
Lemma 3 holds for all s > 1.

Combining Lemma 3 with

_E/miGl

“e_i§6[1>r] _ e—itGZeno < ; ” G[l,r] — VGZeno” =

,
(A32)
from Corollary 1, we prove Eq. (A8).

APPENDIX B: SYMMETRY PROTECTION BY
QUANTUM ZENO EFFECT

In this section, we make a formal connection between
the symmetry-protection technique and the quantum Zeno
effect. In particular, we show how the quantum Zeno
framework provides an alternative explanation for the sup-
pression of simulation error under symmetry protection.

We first note that the symmetry transformations in our
scheme are analogous to the kicks in the quantum Zeno
framework. Suppose that the symmetry transformations
have the form C; = C¥, where Cy € S is also a symmetry
transformation. Let

Co=) e™p, (B1)
"

be the spectral decomposition of Cy, with e~ being the
distinct eigenvalues and P, being the projectors onto the
respective eigensubspaces. The condition on e~ being
distinct ensures that Cy satisfies the definition of Uyje in
Eq. (A2).

With e~#7% being approximated by a circuit Ss; in each
time step, our symmetry-protected simulation becomes

[Icisuci = e ™ cy, B2
k=1

where H.g is the generator of S;, and exists for a small
enough 8¢ (see Lemma 1). Comparing Eq. (B2) with Eq.
(A3), we identify Cy = Ukjk. Therefore, by Theorem 2,
the symmetry-protected simulation is effectively described
by

r
[ CisnCr — e Henzenct,
k=1

(B3)

in the large r limit, where Hefrzeno = Y u PuHerePy.
Recall that Hg is the effective Hamiltonian correspond-
ing the Trotterized evolution Ss;. For small §¢, it is a sum of

the true Hamiltonian H that we are simulating and a small
error term V' (due to the use of Trotterization):

Hg=H+V. (B4)

Therefore, under the symmetry protection, the effective
Hamiltonian is replaced by its projection onto the Zeno
subspaces:

Heff i HePf,Zeno =H+ VZenOa (BS)

where Vzeno = D u Pu VP, is the corresponding projection
of V. In particular, if the error V" does not respect the sym-
metry, the projection Vze,, could be much smaller than
the error V' in an unprotected simulation. The quantum
Zeno framework therefore provides alternative intuition
for the error suppression from the symmetry protection.
We note, however, that choosing the symmetry transforma-
tions C; independently, instead of C = C’é considered in
this section, could lead to more reduction of the simulation
error, and we demonstrate this advantage in Sec. V.

We make these arguments rigorous by proving a bound
analogous to that in Theorem 2 for symmetry-protected
quantum simulation. Specifically, we consider G = Heg =
H + V, where [H, Uyick] = 0. Note that under this assump-
tion, the distinctiveness of the eigenvalues of U ensures
that [PM, H ] = 0 for all & in the spectral decomposition of

Ukick- We also denote by V; = UIZ‘Ck VUkkick =G, —H.

Theorem 4 (Symmetry protection by quantum Zeno
effect). Let Uik be the unitary defined in Eq. (A2) and
suppose that G = H + V such that [H, U] = 0. Let
Gzeno = D_, PuGPy=H + 3, P, VP, denote the pro-
Jjection of G onto the subspaces defined by a set of orthogo-
nal projectors {P, } in the spectral decomposition of Uyick.
We have

e_it GZeno

EZeno = ” Ulzck (Ukicke_iéc) -
- 26/m|| G| ||V £ logr n Eym| V|t

r r

_ 3&/mlGIIYI £ logr

7

(B6)
where & is the inverse spectral gap defined in Eq. (A7).

Note that this bound is stronger than Eq. (A8) in that the
dependence on the norm of the Hamiltonian is improved
from ||G||* to |G|l || V]|. To prove Eq. (B6), we derive a dif-
ferent version of Lemma 3 for the case G = H + V, where
[H, Ukick] = 0.
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Lemma 5. Suppose G = H + V, where [H, U] = 0. For any s > 1 and §t, we have

N
l_[e—inSt _ e—iG[m]sr
k=1

< 28/m |G| | V]| §£slog, s. (B7)

Again, we prove Lemma 5 by induction on s. Suppose Lemma 5 holds for s = s; and s = s, such that |s; — 51| < 1, we
shall prove that it holds for s = s; + s,. Using the triangle inequality

S14s2 51 S1+82
1_[ e*in(Sl_ e*iG[1,31+S2]5l < l_Iefin(St _efiG[l,xl]M + l_[ e*in(Sl _ e*iG[j.1+1’SI+S2]Sl
k=1 k=1 k=s1+1
+ He*iG[l,lerxz]Bf — o 1051+ L5y +59107 p 10154187 (B8)
1
< 26/m ||G|| | V|87 (s1 log, s1 + 52 log, ) + 3 [ Grsy+1.514521> Grisn] || 62 (B9)
To bound the commutator norm, we use a modified version of Lemma 4.
Lemma 6. Given G = H + Vand [H, U] = 0, we have
|| [G[ko,kl]’ G[iOJl]] ” <2(i—jo+k —ko+2)ES/m |G| V] (B10)
Proof. We have
ky J1 ky J1 m
|[Groshsi G Il = || DoGu D G || = || 2oGeD G —Gi—jo+ 1D ) PuGP,
k=ko J=Jo k=ko J=o u=1
ky m m
+{ | D Gt —ko+ 1)) PuGPu (i —jo+ 1) ) PuGP,
k=kq pn=1 n=1
ky J1 m
=11D Gy Vi —Gi—jo+ 1)) PuVP,
k=ko =i p=1
k] m m
+ [ Do Ve— =k + DY PP G —jo+ 1) ) PuGP,
k=ko n=1 u=1
<20k —ko+ DG (Ev/mIVI) + 2 (E¥/m IVI) Gi —jo+ D Gl
=2(1 —jo + ki — ko + 2E/m| G |V, (B11)
where V), = U;Z‘ck VU{iick = G, — H as mentioned above. Therefore, the lemma follows. [ |
Applying Lemma 6 to Eq. (B9), we have
s1+s2 ‘ ‘
]_[ eI _ o7 iCs11)%|| < (291 log, 51 + 255 10g, 52 + 51 4 $2)Ex/m | G|l || V]| 8£. (B12)
k=1
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Using this bound and an inductive argument similar to the proof of Lemma 3, we prove Lemma 5. Finally, combining
Lemma 5 at s = r with

t_&/mivie (B13)
r r

i Vk -r VZeno

k=1

Jertt6tir — e | < Gray — rGimol - =
:

we obtain Eq. (B6).

APPENDIX C: A GENERAL BOUND ON THE TROTTER ERROR

In Sec. III, we prove a bound on the simulation error under the protection from a special class of symmetry
transformations C; = C’(‘;. In this section, we prove a similar, but more general, bound without making such an assumption.
Given a fixed total evolution time #, we first estimate the number of Trotter steps » required to simulate exp(—iHt) so

that the total additive error of the simulation meets a threshold e. Suppose the Hamiltonian H = Z,ﬁ: H, is a sum of
L Hamiltonian terms H,, such that each e=#1®" can be readily simulated on quantum computers. Again, we define the

following quantities:

L L
EZ Z H,[H,,H,]]|, (Cl)
n=1v=p+
L L L
B=>"> > |[HH.H]]|. (C2)
n=lv=p+1lv'=v
L L
=>" Y |H.H| . (C3)
p=1v=p+1
which are independent of ¢, 7.
The first-order Trotterization approximates exp(—iH 5t) by
L
S5 = 1_[ efiH#(St’ (C4)

where Hizl U, =Up...U.U, is an ordered product.

To get an accurate scaling of the gate count with the error tolerance, time, and the system size, we extend the approach
in Ref. [22] to estimate the higher-order contributions to the total error. First, we estimate the higher-order contributions
to the additive error in one Trotter step.

Lemma 7. Assuming B8t < 2a and o*8t < y + B, the Trotter error in approximating Us; = exp(—iH$8t) by Sy, in Eq.
(C4) is given by

87 |
Esi = Us — S = U81U07 + V(81), (C5)

where vy is defined in Eq. (15) and ]7(5t) is an operator bounded by
[Ven| < as?, (C6)

with A = 5/6(y + B).
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Proof. From [22, Theorem 8], we have

St
S5 = e M exp {—i / drlﬁ(rl)}, (C7)
0

where 7 exp {} is the time-ordered exponential,

L L
ﬁ(f]) — eirladH Z l_[ e*irladHUHu _ H/,L , (C8)

n=1 \v=p+1

ad,B = [4, B, and ¢4 B = ¢~ Beit4 Note that the summand in the definition of F(z;) is of order O (t;). Therefore,
we can rewrite it as (see Ref. [22, Theorem 10] or use a direct differentiation):

L
l_[ —lfladHuH H - Z / dr, 1_[ —itjady , e~ imadn, [H,, H, ] (C9)
v=p+1 v=p+1 V=v+1
=—i Z [H,, H, ]t —i Z / dr e‘”‘ad”we—”ﬂ% [H,,H,] — [H,,H,] |. (C10)
v=p+1 v=p+1 v/ v+l

EG[A,V (t1,12)

Again, we note that G(t;) = O (1] + 12). Therefore, we can rewrite it (using either Ref. [22] or a direct differentiation) as

L A 7 A
Gu(t1, 1) = —i Z l_[ e_lrladHSf drze”madiy [Hy,[H,y, H,]|
0

V=v+1s=v'+1

L 13 5
_.2 —irlade,f d —if3%adHV H.[H H Cl11
l‘L’1 U,EH@ A 3e [ vs [Hoy, M]] ( )
Using the triangle inequality, we have
L
|G| <1 Y | [Ho [Hy ] - (C12)
Therefore,
N L L L L L
[Fa| <n)” Y [H. 1| 712 Z Z Hy, [Hy, H,]]| (C13)
pn=1v=p+1 n=lv=p+lv'=
In addition, we have
M H, H,] — [H,,H,] =i / 1 dve™ % [H,[H,,H,]]. (C14)
0
Therefore, with vy = Zu 1Zv 1Ly, H, ], we have
5 L L 7
Feay+ivn ==i) 3 [”‘ad*’[ 1 — [Hy, Hy o + &7 / drzG,L,v(n,rz)]
n=1v=pu+1 0
L L
= / drz{zrle”2adH [H.[H,,H,]] +eff1HGM,v(zl,r2)} (C15)
u=lv=p+l 0
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Expanding the time-ordered exponential, we have

8t - 8t - St 71 - - 1% -
T exp {—i/ drlF(rl)} =1- i/ duF(n) — / dt / Aty F (1) F (1) 7 exp {—i/ dr3F(r3)} (C16)
0 0 0 0 0

5 st N
=1- ;vo—i/ dv[F (1) + ivet1]
0

8t T] ~ ~ L) ~
—/ dn/ d‘L’zF(‘L’l)F(Tz)TeXp{—i/ d‘L’3F(T3)}. (C17)
0 0 0
Therefore, we have
) - St 71 - -
5, — e-io | szsz_H " dey [Fe) + ivon | + / dr, / do | Fo | |Fo)| (C18)
0 0
st 5t \?
§V;L’B(St3+?(a+5ﬂ) . (C19)

In particular, assuming 88¢ < 2« and a8t < y + 8, we have

8 3
Ex = Unvo—- | < ASE, (C20)

with A = 5/6(y + B). Therefore, Lemma 7 follows. |

As aresult of Lemma 7, we can bound the additive error in one Trotter step:

sl < ”2—0”&2 + ASP. (C21)

Therefore, we arrive at a bound for the total error for the simulation

-11 CiS5Ci (C22)
k=1
UL EsiUksiC ") 1€l 23
kor<st Ust Ci +Z ) 1€l (C23)
j=2
—~ ot 87 IR ;
> ClUyuoUisiCrl| - + A8 + 3 (- 1Exl) (C24)
k=1 j=2
—~ o 87 3 >
> CLULsvoUiseCi - HrAdt + 277 |1 Esl (C25)
k=1
r 1 £\ ¢
Z CkUkBtUOUk(Ska 5 A 5 +2 7 lvoll + A; 2 (C26)

=00
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where Uys;, = exp(—iHkSt) and we assume 7 ||Es;|| < 1/2 to bound the sum over j . This bound again has the same feature
as the bound in Theorem 1: the total error, to the lowest order, scales with | 7g||—an averaged version of vy under the
symmetry transformations—instead of scaling with |vg||. Note, however, that the definition of vy here, with the addition
of the transformations under Uyg;, is slightly different from Theorem 1.

APPENDIX D: PROOF OF LEMMA 1

In this section, we prove Lemma 1, which provides a bound on the error in one Trotter step.

Proof. From Ref. [22, Theorem 8], we have

8t
Sse = T exp {—i/ dvi [H +F(t1)]}, (D1)
0

where 7 exp {} is the time-ordered exponential,

L L
Fay=Y [ [] ¢e™mH, -H,]. (D2)
n=1 \v=p+l

adyB = [4, B], and e 4B = ¢~ B¢ Note that the summand in the definition of F(t;) is of order O (z;). Therefore,
we can rewrite it as (see [22, Theorem 10] or use a direct differentiation)

L ' L 7 L , .
l_[ o—im1adm, HM _ HM = —i Z / dr 1_[ e_l‘rlade/ e—im2adm, [HmHu] (D3)
v=p+1 v=p+170 Vi=v+l
L L 7 L ;
=i Z [Hy,HyJry — i Z / dr l_[ e My gminadn, (v, Hy] = [Ho, Hy] | - (D4)
v=p+1 v=p+l 0 Vi=v+l

=Gy, (11,12)

We note that G(t;) = O (11 + 12). [Recall that O () is the standard Bachmann-Landau big-O notation.] Therefore, we can
rewrite it (using either Ref. [22] or a direct differentiation) as

L L

) 7] .
Guo(tim) =—i Y [ e / drse ™" [Hy, [H,, H,]]
V=v+1s=v+1 0
L
.2 —itjady , ml —iT3 ?adHV
—i= ] e v dve B0 [H,, [H,, H,]]. (D5)
T 0
V=v+1
Using the triangle inequality, we have
L
|Gt )| <71 Y |[Hor [Ho, HA) - (D6)
v'=v
Therefore, with vy = Z;ﬁ:l S w1y, Hy], we have
L L 7
F(‘L’l) + iUo‘L’] = —iZ Z / d‘L’zGu,v(‘[l, ‘L’2) . (D7)
n=1v=pu+1 0

=F (1))
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Using the bound on || GW| , we have

L L L
IF@l <72 > > | [Ho [Hy, Hy)

u=lv=p+1v'=v

) (DY)
which implies

L L L L L
IFEl <a ) Y |H. B+ Y Y |[He 17, 5] (D9)

n=1v=p+1 n=1lv=pu+1v=p
=« =B

In addition, combining Eq. (D7) with Eq. (D1), we have

8t
Sgt = ’Z'exp {—l/ d‘L’l [H — iU()‘L'] + f(f])]} , (DIO)
0

with vy and F(t;) given above.

Next, we rewrite the time-ordered exponential into a regular exponential using the Magnus expansion.
Lemma 8 (Magnus expansion [53-55]). Let A(t) be a continuous operator-valued function defined for 0 < T < t such
that fot dr | A(x)|| < 1. Then, the equality

t 0
Texp{/ dt A(r)} =exp{ZS2j(t)} (D11)
0 j=1

holds with a convergent operator series Z;; Q; (1), where

1 e -1
Q0 ==y (D% / dr, / dy[A(t),... [AG -, AT)]...], (D12)
J o (d ) 0 0
b
with the sum being taken over all permutations o of {1,...,j} and dy is the number of descents, i.e., pairs of con-
secutive numbers oy, 041 for k =1,...,j — 1 such that oy > oy, in the permutation o. Furthermore, Q;(t) are all

anti-Hermitian if A(t) is anti-Hermitian. It is worth noting that the first two Q; (f) are

Q](z):/ dr A(t), (D13)
0

1 t T
Q () = 5/(; dTl/O dn, [A(1), A(m)]. (D14)

We now use Lemma 19 to rewrite Eq. (D10) with A(t) = —i[H + F(1)] = —i[H — ivgt; + F ()]

Ss; = exp { Zgj(at)}, (D15)

j=1
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where the first-order Magnus term is

i

St
Qi (81 = —if dt [H — vt + F(11)] = —i8t|:H -3
0

1 St
Voot + — / d‘l.’lf(fl)] .
8t Jo

To bound the higher-order terms in the Magnus expansion, we first note that

ILATD, Al = IIH + F(n1), H + F(w)]l

< 2[ IHE @) + 1E @O+ 1F @)l ||F(f2)||}

< 2[ IH | (eti + BTf) + IH| (w2 + BT3) + (o0ty + BTf) (a2 + ﬂ‘[zz)i|

<2(21H| + st + BS£) (adt + BSr)

<4(IH| + adt+ B87) (adt + B5r°)
for all 71, 7o < ét. Similarly, for higher-order nested commutators:

ILAG@D, .- [AG -, A@)] - T < 2 21A@DI - - A ) HTIA@ -, AE)]

<2 (IH|| + ast + B82Y ™" (adt + B57) .

Using Lemma 19 and noting that there are j ! permutations for each j, we can crudely bound

8t d‘[j,]
EXEDS /0 d, /0 A LA, . .. [AG_1). A@)] .. 1l

gj!i—izf (IH|| + ast + Bs2Y ™" (ast + B5P)

< @8ty (|HIl + adt + 5727Y ' (bt + BS7P)

forallj > 2. Define

1 [ 1 &
Ven = fo dnF (o) + 37],2_2: @, (51),

we could write

S5 = exp {—iét[H —%vo(St—l- V(St)]}.

— ——
=V
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It follows from the bounds on €2; above that

V@D <828 + (e + B8 Y _(281Y (IHI| + et + sy ™! (D29)
j=2
< 8PP + 43¢ (a + BSY) (IH | + bt + BSF) Z(zw (IH || 4 adt + ﬁBtz)j (D30)
Jj=0
< 87 B+ 887 (a + B0 (| H|| + adt + B3F) (D31)

where we assume 8t( |H | 4 bt + /%tz) < 1/4 so that the sum over j in the second line converges. We note that this

assumption also ensures that the Magnus expansion converges. The bound states that ||V (6¢)|| scales with §¢ as O ((Stz).
Assuming 86t < «, 208t < |H||, and 85¢||H|| < 1, we get

V@)l < 82 (B + 32a||H]) . (D32)

This bound completes the proof of Lemma 1. Note that the constant prefactor of our bound may be further tightened by
using a stronger version of Lemma 19. Such an improvement may be especially useful for near-term implementations of
quantum simulation, but a detailed discussion falls out of the scope of the current paper and is left as a subject for future
investigation. |

APPENDIX E: PROOF OF THEOREM 1

In this section, we provide more details on the proof of Theorem 1 for completeness. Using the triangle inequality

-
Hefl(H+CkVCk)5t _ efth

E =

k=1

< H e iflenit _ pitlt]| | l—[ oI HFCVCRS8 _ =iflest (E1)
k=1
_ 2 H Vi IV £ 1
< H V” ‘4 é\/ﬁ(” I+ 1VID VI ¢ logr (E2)
r
£ £ 28 m(|H| + tadt + x82)(Aast + x8£2)F logr

= 3 ol + x5 + 2 . 2 : (E3)

Since x = B+ 32x||H]||, x5t = Bét + 32x||H||§t < S (assuming B6t < « and 8||H||6¢ < 1). Therefore, we can upper
bound

1 1 t
(||H|| + edt+ x8z2) (§a3z+ x5t2) < 6(|H|| + 6a8f)ast < 24 |H| -, (E4)
r

where we also use the assumption that 2«6t < ||H||. Therefore, we have

2o A
e = o Mol + x5 + 486 Vma|IH |
—————

=K

A 1;gr. (ES)

This completes the proof of Theorem 1.
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