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In this perspective we discuss conditions under which it would be possible for a modest fault-tolerant
quantum computer to realize a runtime advantage by executing a quantum algorithm with only a small
polynomial speedup over the best classical alternative. The challenge is that the computation must finish
within a reasonable amount of time while being difficult enough that the small quantum scaling advantage
would compensate for the large constant factor overheads associated with error correction. We compute
several examples of such runtimes using state-of-the-art surface code constructions under a variety of
assumptions. We conclude that quadratic speedups will not enable quantum advantage on early generations
of such fault-tolerant devices unless there is a significant improvement in how we realize quantum error
correction. While this conclusion persists even if we were to increase the rate of logical gates in the surface
code by more than an order of magnitude, we also repeat this analysis for speedups by other polynomial
degrees and find that quartic speedups look significantly more practical.
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I. INTRODUCTION

One of the most important goals of the field of quantum
computing is to eventually build a fault-tolerant quantum
computer. But what valuable and classically challeng-
ing problems could we actually solve on such a device?
Among the most compelling applications are quantum sim-
ulation [1,2] and prime factoring [3]. Quantum algorithms
for these tasks give exponential speedups over known clas-
sical alternatives but would have limited impact compared
with significant improvements in our ability to address
problems in broad areas of industrial relevance such as
optimization and machine learning. However, while quan-
tum algorithms exist for these applications, the most rig-
orous results have been able to show a large speedup
only in contrived settings or a smaller speedup across
a broad range of problems. For example, many quan-
tum algorithms (often based on amplitude amplification
[4]) give quadratic speedups for tasks such as search [5],
optimization [5—7], Monte Carlo methods [4,8,9], and var-
ious machine learning tasks [10,11]. However, attempts to
assess the overheads of some such applications within fault
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tolerance have come up with discouraging predictions for
what would be required to achieve a practical advantage
against classical algorithms [7,12].

The central issue is that quantum error correction and the
device operation time introduce significant constant factor
slowdowns to the algorithm runtime (see Fig. 1). These
large overheads present many challenges for the practical
realization of useful fault-tolerant devices. However, for
applications that benefit from an exponential speedup rel-
ative to classical algorithms, the exponential scaling of the
classical approach quickly catches up to the large constant
factors of the quantum approach and so one can achieve
a practical runtime advantage for even modest problem
sizes. This is borne out through numerous studies on the
cost of error-correcting applications with an exponential
scaling advantage in areas such as quantum chemistry
[14—-16], quantum simulation of lattice models [17,18], and
prime factoring [19].

In this perspective we discuss when it would be prac-
tical for a modest fault-tolerant quantum computer to
realize a quantum advantage with quantum algorithms
giving only a small polynomial speedup over their clas-
sical competition. We see that with only a low-order (e.g.,
quadratic) speedup, exorbitantly long runtimes are some-
times required for the slightly worse scaling of the classical
algorithm to catch up to the slightly better scaling (but
worse constant factors) of the quantum algorithm. We
argue that the problem is especially pronounced when the
best classical algorithms for a problem can also be easily
parallelized.
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FIG. 1. The primary obstacle in realizing a runtime advantage
for low-degree quantum speedups is the enormous slowdown
when one is performing basic logic operations within quantum
error correction. (a) A surface code Toffoli factory for distill-
ing Toffoli gates (which act as the NAND gate when the target
bit is on) requires a space-time volume greater than 10 qubit
seconds under reasonable assumptions on the capabilities of an
error-corrected superconducting qubit platform [13]. (b) A NAND
circuit realized in CMOS can be executed with just a few tran-
sistors in well under a nanosecond. Thus, there is roughly a
difference of 10 orders of magnitude between the space-time vol-
ume required for comparable operations on an error-corrected
quantum computer and a classical computer.

Our analysis emphasizes current projections within the
surface code [20] since it has the highest threshold error
rate for a two-dimensional (2D) quantum computing archi-
tecture and is generally regarded as the most practical
quantum error-correcting code [21]. We focus on a mod-
est realization of the surface code that would involve
enough resources to perform classically intractable calcu-
lations but support only a few state distillation factories.
Our analysis differs from studies analyzing the viability of
error-correcting quadratic speedups for combinatorial opti-
mization such as those in Refs. [7,12] by addressing the
prospects for achieving quantum advantage via polynomial
speedup for a broad class of algorithms rather than for spe-
cific problems. Campbell et al.[7] were the first to detail
poor prospects for error correcting an algorithm achieving
a quadratic speedup with a small fault-tolerant processor.

Here we assume that there is some problem that can be
solved by a classical computer that makes M calls to a
“classical primitive” circuit or by a quantum computer that
makes M calls to a “quantum primitive” circuit (which
is often, but not always, related to the classical primitive
circuit). This corresponds to an order d polynomial quan-
tum speedup in the number of queries to these subroutines.
For d = 2, this is especially evocative of a common class
of quantum algorithms leveraging amplitude amplification.

This generously assumes no prefactor overhead in a quan-
tum implementation of an algorithm with respect to the
number of calls required, and along with other crude
assumptions allows us to bound the crossover time.

Our back-of-the-envelope analysis makes many assump-
tions that are overly optimistic toward the quantum com-
puter and yet we still conclude that the prospects look
poor for quadratic speedups with current error-correcting
codes and architectures to outperform classical computers
in the time to solution. It seems that to realize a quan-
tum advantage with reasonable fault-tolerant resources,
one must either focus beyond quadratic speedups or dra-
matically improve techniques for error correction, or do
both. Our conclusion is already “folk wisdom” among
some in the small community that studies quantum algo-
rithms and error correction with an eye toward practical
realization; however, this reality is not widely appreci-
ated in the broader community that studies algorithms
and applications of quantum computers more generally,
and there is value in presenting a specific argument to
this effect in written form. An encouraging finding is that
the prospects for an error-corrected quantum advantage
look significantly better with quartic speedups. Of course,
there might exist use cases involving quadratic speedups
that defy the framework of this analysis. Either way, we
hope this perspective will encourage the field to critically
examine the prospects for quantum advantage with error-
corrected quadratic speedups and either produce examples
where it is feasible or focus more effort on algorithms with
larger speedups.

II. RELATIONSHIP BETWEEN PRIMITIVE
TIMES AND RUNTIME

Many quantum algorithms are built on coherent access
to primitives implemented with classical logic. For exam-
ple, this classical logic might be required to compute the
value of a classical cost function for optimization [12], to
evaluate a function of a trajectory of some security that
one is pricing with a Monte Carlo method [9], or to com-
pute some classical criterion that flags a marked state for
which one might be searching [5]. We define the runtimes
of the quantum and classical algorithms as

To=Mtg, Tc=M"t, (1)

where 7 gives the total runtime of the algorithm, M is the
number of primitive calls required, d is the order of the
polynomial speedup the quantum computer achieves, and
t is the time required to perform a call. Throughout this
perspective, the subscripts Q and C denote “quantum” and
“classical” implementations.
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The condition for quantum advantage is

1

fo\ T
To <7Tc andthus M > (t_> . 2)
c

We see then that whenever a problem will require enough
calls M that a quantum advantage is possible,

1

To>T =1 (t—Q> o ) 3)

fc

where 7* is the “break-even time,” which occurs when
Tp = 1c, corresponding to onset of quantum advantage.
As emphasized in Fig. 1, we see that the fundamental chal-
lenge in realizing this runtime advantage against classical
computers (for small d) is that 7y > ¢ in error-corrected
contexts, making 7 * very large.

Rather than using a single CPU for the classical
approach, one might instead parallelize the algorithm using
P classical CPUs. This will reduce the total classical
runtime to

M9t
Te = SC, (4)
where
S il B (5)
=l
P b

where o is the fraction of the algorithm that must be
executed in series and S is the speedup factor due
to parallelization consistent with “Amdahl’s law” [22].
Amdahl’s law scaling is considered somewhat pessimistic
as one can often adjust the size of problems to fully
exploit the computing power that becomes available with
more parallelism (e.g., see “Gustafson’s law” [23] for
a more optimistic formula for S). But it also seems
that in most situations where one might hope to find
a quadratic speedup with a quantum computer (e.g.,
applications such as search, optimization, Monte Carlo
sampling, and regression) the corresponding classical
approach is embarrassingly parallel (suggesting that « is
small enough that S ~ P for reasonable values of P).
Regardless of the form of S, classical parallelism leads to
the following revised conditions for quantum advantage:

1 1
toS\ 7T toS\ 7T
M > (Q—) and T* =1, (Q—) . (6)
tc tc

While parallel efficiency might be limited for some appli-
cations, any implementation of an error-correcting code
will also require substantial classical coprocessing in order
to perform decoding, and this is likely to require thousands

of classical cores. Although many quantum algorithms
can also benefit from various forms of parallelism, we
consider an early fault tolerance setting where there is
likely an insufficient number of logical qubits to exploit
a space-time trade-off to the same extent.

III. IMPLEMENTING ERROR-CORRECTED
QUANTUM PRIMITIVES

We now explain the principal overheads believed to be
required for the best candidate for quantum error correc-
tion on a two-dimensional lattice: the surface code. Toffoli
gates are the most commonly used gate for implementing
classical logic on a quantum computer but cannot be imple-
mented transversally within practical implementations of
the surface code. Instead, one must implement these gates
by first distilling resource states. In particular, to imple-
ment a Toffoli gate, one requires a controlled controlled Z
(CCZ) state (|CCZ) = CCZ |+ + +)), and these states are
consumed during the implementation of the gate. Distill-
ing CCZ states requires a substantial amount of both time
and hardware, and thus they are usually the bottleneck in
realizing quantum algorithms within the surface code.

Here we focus on the state-of-the-art Toffoli factory con-
structions of Ref. [13], which are based on applying the lat-
tice surgery constructions of Ref. [24] to the fault-tolerant
Toffoli protocols of Refs. [25,26]. With that approach, one
Toffoli gate requires 5.5 x d surface code cycles, where
d is the code distance. The time per round of the surface
code, including the decoding time, is expected to be around
1 ws in superconducting qubits. Our analysis assumes a
code distance on the order of 30. This would be sufficient
for an algorithm with billions of gates and physical gate
error rates on the order of 10~ (as our analysis will reveal,
even more than a billion gates would likely be required
to obtain quantum advantage with a modest polynomial
speedup). With these assumptions, our model predicts a
Toffoli gate time 75 of 30 x 5.5 x 1 us~ 170 ws. This
rough approximation matches the more detailed resource
estimate of Ref. [13]. We discuss these estimates in more
detail in Appendix A.

Under the aforementioned assumptions, which are spe-
cific to contemporary realizations of the surface code using
superconducting qubits, we could express the quantum
primitive runtime as tp =t x G =170 us x G, where
G is the number of Toffoli gates required to implement
the quantum primitive. Although we have focused on
superconducting qubits, we can also contextualize the per-
formance of ion traps—another leading architecture for
quantum advantage. lon qubits have hour-long coherence
times [27] but are typically gated by the performance of
their two-qubit gate [28]. Gate times within a single ion
crystal can range from hundreds of microseconds to sub-
microseconds [29-33], and can be efficiently parallelized
[34,35].
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Multiple ion crystals can be connected to form a
networked quantum computer, either through a charge-
coupled device [36,37] or via photonic interfaces [38,39].
While a charge-coupled device may support thousands of
qubits, millions of qubits will likely require photonic inter-
connects, although large shuttling-based traps have been
proposed [40]. For either architecture, a cycle frequency of
approximately 10 kHz has been identified as an ambitious
but attainable goal [40—42]. Consequently, we can roughly
estimate that such a device will be limited by a clock speed
about 100 times slower than the 1-us decoding throughput
limit, commensurate with typical high-fidelity two-qubit
gate times [43,44] and corresponding to 7 & 17 ms. How-
ever, in trade, such a device may support the requisite
connectivity for non-2D error-corrected codes and fault-
tolerant gates. While the advantages of such approaches
are speculative, we touch on some of these alternative
proposals in Appendix B.

On a very large surface code quantum computer one
could instead use multiple Toffoli factories (at a high cost
in the number of physical qubits required) to reduce 7o
by performing state distillation in parallel. However, the
Toffoli gates are only about 2 orders of magnitude slower
than the Clifford gates, and when using multiple factories,
one needs to account for routing overhead. Thus, while
to can be reduced at the cost of using many more qubits,
the reduction is by a factor that is only between about 10
and 10.

If N is the number of qubits on which this problem is
defined, then a sensible lower bound would seem to be G >
N, and thus #p > 170 us x N. For example, in Grover’s
algorithm [5] one must perform a reflection that requires
O(N) Toffoli gates. To achieve a quantum advantage we
would need to focus on problem sizes that are sufficiently
large that enough calls can be made so that Eq. (2) is
satisfied. We find it difficult to imagine satisfying this con-
dition for problem sizes smaller than 100 qubits. Thus,
an approximate “lower bound” (using N = 100) would be
to > 17 ms.

In addition to this lower bound, we also consider a spe-
cific, realistic example to keep our estimates grounded.
We focus on the quantum accelerated simulated anneal-
ing by the qubitized quantum walk algorithm studied in
Ref. [45,46], which appears to provide a quadratic speedup
over classical simulated annealing (at least in terms of
the best known bounds) in terms of the mixing time of
the Markov chain under certain assumptions [47]. This is
among the most efficient algorithms compiled in Ref. [12],
and for the Sherrington-Kirkpatrick model [48] the imple-
mentation complexity is SN + O(log N) (ignoring some
subdominant scalings that depend on precision), which is
worse than the scaling of our lower bound by only a factor
of 5. For example, for an N = 512 qubit instance, Sanders
et al. [12] show that only about 2.6 x 10° Toffoli gates are
required to make an update. Thus, for that problem size

(which we choose to facilitate a comparison with classical
algorithms, which we discuss later) we have fp = 440 ms.

IV. IMPLEMENTING CLASSICAL PRIMITIVES

Classical computers are very fast; a typical 3-GHz CPU
can perform several billion 64-bit operations (e.g., floating
point multiplications) per second. We might crudely write
that the classical primitive time #¢ is 330 ps x L, where L is
the number of classical clock cycles required to implement
the classical primitive. For our first example comparison
of quantum and classical primitives, we assume that any
classical logic operation that would require one Toffoli
gate in the quantum primitive can be executed during one
classical clock cycle in the classical primitive. This seems
generous to the quantum computer since many operations
that would take a single clock cycle on a classical com-
puter would actually require thousands of Toffoli gates.
(Note that we are not assuming any scaling advantage for
the quantum computer in the primitive implementations.)
One might worry about memory-bound classical primi-
tives (since calls to main memory can take hundreds of
clock cycles) but since problems defined on more than
thousands of logical bits would be infeasible to process
on a small fault-tolerant quantum computer, we expect
that the memory required for the corresponding classical
primitives can be held in cache.

Thus, a corresponding bound on the time to realize a
classical primitive for a problem where a quantum com-
puter could realize a quantum primitive with anywhere
near the lower bound time given in the previous section
(to = 170 us x N) is tc < 330 ps x N, and for N = 100,
tc <33 ns.

Even though the equivalence we make between Toffoli
gates and classical compute cycles is seemingly generous
to the quantum computer, the assumption of such a cheap
primitive on the quantum side (only 100 Toffoli gates)
results in what appears to be a fairly cheap primitive on the
classical side. However, because Eq. (6) scales worse with
fo than with f¢, this assumption is ultimately optimistic
toward the overall crossover time.

Consistent with the previous section, we also discuss
the classical primitive time required to apply simulated
annealing to an instance of the Sherrington-Kirkpatrick
model. With use of the techniques developed in Ref. [49],
a high-performance implementation of the classical sim-
ulated annealing code for an N = 512 instance of the
Sherrington-Kirkpatrick model can perform a simulated
annealing step in roughly 7 CPU nanoseconds [12] (this
accounts for the fact that most updates for the Sherrington-
Kirkpatrick model are rejected); thus, in that case, t¢c =
7 ns. But given the high costs of quantum computing, it
is unclear whether we should make a comparison with a
single classical core.
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V. MINIMUM RUNTIME FOR QUADRATIC
QUANTUM ADVANTAGE

Here we discuss the ramifications that the primitive
runtimes discussed in the previous two sections have for
the minimum time to achieve an advantage according to
Eq. (3) in the case of a quadratic quantum speedup. First,
we compare the example of a quantum primitive requiring
only N = 100 Toffoli gates and 7p = 17 ms. We argued
that any such primitive could likely be computed in 7 =
33 ns on a single core. For this example, 7* = tZQ/tC =
2.4 h. One might object to this minimal example on the
grounds that it seems unlikely any interesting primitive
would require only 100 Toffoli gates. While this is true,
we point out that because the quantum runtime is quadratic
in the quantum primitive time and only inversely propor-
tional to the classical primitive time, the overall crossover
time can only get worse by our assuming that more than
100 Toffoli gates would be required.

Next we make a comparison with the example of quan-
tum accelerated simulated annealing. We focus on this
example because the steps of the quantum algorithm
have been concretely compiled, appear quite efficient,
and have a clear classical analogue. Here, for an N =
512 qubit instance we have tZQ/tc = 320 days, repro-
ducing the finding in Ref. [12]. Quantum advantage in
this case would occur when M > ty/tc = 6.3 x 107. This
means that 4.0 x 10" calls would be required for the
classical algorithm. However, most N = 512 Sherrington-
Kirkpatrick model instances would require many fewer
calls to solve with classical simulated annealing, and so
one would need to focus on an even bigger system, for
which the numbers will look yet worse for the quan-
tum computer. Notice that our simulated annealing exam-
ple gives a quantum runtime that is much longer than
the resources required for the quantum primitive with

TABLE 1.

N = 100 Toffoli gates. This is because the notion that it
would take a classical computer an entire clock cycle to do
what a quantum computer could accomplish with a single
Toffoli gate is very generous to the quantum computer.

At first glance, the quantum runtime of 2.4 h to achieve
an advantage for the primitive with just 100 Toffoli gates
seems encouraging. Unfortunately, this was just for a sin-
gle classical core. Even most laptops have on the order
of ten cores these days, and again, most of the problems
where quantum computers display a quadratic advantage
are classically embarrassingly parallel problems. Further-
more, error-corrected quantum computers are likely to use
thousands of classical CPUs just for decoding. When P
different classical CPUs are used in parallel, the break-
even time is given by Eq. (6). Using that equation, if
we take P = 3000 CPUs for the classical task (rather
than using them for error correction), and if the classi-
cal algorithm is sufficiently parallelizable (a~' <« P, so
S &2 P), we see that the break-even time even in this still
quantum-generous example becomes 1 year. As we discuss
in the next section, there are also ways of parallelizing the
quantum computations (e.g., by using multiple quantum
computers or distillation factories).

VI. THE VIABILITY OF HIGHER POLYNOMIAL
SPEEDUPS AND THE IMPACT OF FASTER
ERROR CORRECTION

We report values of both M and 7* assuming quantum
speedups by different polynomial degrees under different
amounts of classical parallelism in Table I. While the
viability of quantum advantage with cubic speedups is
still a bit ambiguous, the prospects of achieving quan-
tum advantage given a quartic speedup are promising.
Even the simulated annealing example run with a classical
adversary with § = 10° parallelism would give quantum

Resources required to achieve quantum advantage assuming speedups of various polynomial degrees d. We make this

comparison against an adversary using distributed classical computing resources that achieve a speedup factor S and report the number
of algorithm steps M and the total runtime 7 * before a quantum speedup is possible. We make this comparison for both the informal
resource “lower bound” we argue for in the main text (using #p > 17 ms and #c < 33 ns), and for the specific example of quantum
simulated annealing applied to the Sherrington-Kirkpatrick model using the quantum and classical implementations discussed in

Refs. [12,49] (giving tp = 440 ms and #¢c = 7 ns).

Polynomial degree Parallelism Resource “lower bound” Simulated annealing
speedup S Iterations M Runtime 7* Iterations M Runtime 7*
Quadratic, d = 2 1 52 x 10° 24h 6.3 x 107 320 days
103 5.2 x 108 100 days 6.3 x 1010 880 years
10° 5.2 x 10! 280 years 6.3 x 1013 880 millennia
Cubic,d =3 1 7.2 x 10? 12's 7.9 x 10° 58 min
103 2.3 x 10 6.4 min 2.5 % 10° 1.3 days
10° 7.2 x 10° 3.4h 7.9 x 10° 40 days
Quartic, d = 4 1 8.0 x 10! 14s 4.0 x 10? 2.9 min
103 8.0 x 10? 14s 4.0 x 103 29 min
10° 8.0 x 10° 2.3 min 4.0 x 10 49h
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advantage after 5 h of runtime if we assume a quartic
speedup (while we do not expect a quartic speedup in that
case, the comparison is still instructive).

It is rather surprising just how much of a difference there
is for this example between assuming a quadratic speedup
(requiring 880 millennia of runtime for an advantage) and
a quartic speedup (requiring just 4.9 h of runtime for an
advantage). There are not as many examples of quartic
speedups in quantum computing but there are a few, such
as the tensor principal component analysis algorithm of
Hastings [50]. Another example is the quartic query com-
plexity reductions of Ambainis et al. [51] and Aaronson
et al. [52]. We also expect that certain applications of
quantum algorithms for linear systems [53] (such as for
solving linear differential equations in a high dimension
[54]) might lead to modest polynomial speedups higher
than quadratic. It is also possible that some heuristic quan-
tum algorithms for optimization might give larger than
quadratic improvements for some classes of problems,
although this is still speculative.

Another question we might ask is what would hap-
pen if we were somehow able to implement Toffoli gates
much faster in the surface code? For example, we might
achieve this by fanning out and using more physical qubits
per factory, by using more Toffoli factories, by inventing
significantly more efficient protocols for Toffoli state distil-
lation, or even by switching to a different technology with
an intrinsically faster cycle time. We perform this analysis
for the case of quadratic speedups; there, the quantum run-
time is reduced to 79 = M ty/R, where R > 1 is a speedup
factor corresponding to performing Toffoli distillation in
time 170 pus/R. In analogy to Eq. (6), this leads to the
equations for a quadratic quantum speedup:

t0S S
M>-2 and Tr = <. @)
tcR tch

In Table II we compute Eq. (7) for our example problems
with R = 10, R = 107, and R = 10> assuming a classical
adversary capable of achieving an S = 103 parallelism. We
restrict ourselves to S = 10° due to the general difficulty in
achieving high parallel efficiency described by Amdahl’s
law. However,for simulated annealing we can achieve S =
10° in practice (and so these numbers are overly optimistic
for that case).

Unfortunately, even if Toffoli distillation rates increase
by an order of magnitude it would not be enough to make
quantum advantage with a quadratic speedup viable. If
Toffoli distillation rates increase by 2 orders magnitude
(making them essentially as cheap as Clifford gates) then
it would still be challenging to obtain quantum advantage
with a quadratic speedup (it would take more than a month
for the simulated annealing example despite our limiting
the classical parallelism to S = 103) but we cannot cate-
gorically rule it out for all algorithms. For speedup of 3

TABLE II. Resources required to achieve quantum advantage
under a quadratic speedup assuming a Toffoli distillation time of
170 us/R and a classical adversary using classical parallelism
with § = 10°. The speedup factor R can account for improve-
ments in error-correction implementations or in our estimates of
their overheads. For example, R = 10 could be reached by using
ten Toffoli factories if routing were very efficient (at the cost of
requiring many more qubits).

Speedup Resource “lower bound” Simulated annealing

factor Tterations M Runtime 7* Iterations M Runtime 7*
R=10" 5.2 x10’ 1.0 day 6.3 x 10° 8.8 years
R=10> 52x10° 15 min 6.3 x 108 32 days
R=10" 52x10° 8.8s 6.3 x 107 7.7h

orders of magnitude, the story would be materially differ-
ent but this would likely require a significant breakthrough.
Even if classical processing and signal propagation were
instantaneous, and we could adapt measurements to take
advantage of feedforward single-qubit gates being applied
only half the time, a single layer of non-Clifford gates
would still take a hard limit of the measurement time plus
half the single-qubit gate time.

VII. CONCLUSION

We investigate simple conditions that must be satis-
fied to realize a quantum advantage through polynomial
speedups on a small fault-tolerant quantum computer.
Our ultimate finding is that the prospects are generally
poor for a quadratic speedup, consistent with folk knowl-
edge in the error-correction community and recent work
such as that in Refs. [7,12]. The comparison with paral-
lel classical resources is particularly damning for quantum
computing, and unfortunately many quadratic quantum
speedups (especially those leveraging amplitude amplifi-
cation) apply to problems that are highly parallelizeable.
The strongest conclusions in this work assume that one
can achieve classical parallelism speedups on the order of
10 or more. But if one can produce a quadratic speedup
for a problem where that is not the case, the prospects of
quantum advantage would be improved.

These findings do not apply to all polynomial speedups.
We find that while one would need to very significantly
increase the rate of an error-corrected processor to help
the case of quadratic speedups, having a quartic speedup
rather than a quadratic speedup is often sufficient to restore
the viability of achieving quantum advantage on a mod-
est processor. Thus, we believe that these results suggest
that the field should focus beyond quadratic speedups to
find viable applications that might produce a quantum
advantage on the first several generations of fault-tolerant
quantum computers.

We expect this conclusion will persist under a variety
of different cost models (e.g., were we to focus on the
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energy consumption of a computation rather than the run-
time). However, we also expect that the community will
make progress on some of the challenges described here, or
perhaps identify circumstances under which the assump-
tions of this analysis do not apply. Either way, we hope
that these arguments will foster further discussion about
how we might develop broadly applicable algorithms that
can achieve quantum advantage on small error-corrected
quantum computers.
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APPENDIX A: ACCOUNTING FOR
ERROR-CORRECTION COSTS

In the main text, we provide an estimate for the time that
it takes to perform a single Toffoli gate with optimized fac-
tories within the surface code. The crux of the argument
in the main text is that this time is so much longer than
the classical equivalent, and so there is a massive overhead
that must be first overcome. We believe that it is valuable
in directing future research in error correction and algo-
rithms to break down the origin of this overhead into its
contributions from quantum error correction and the phys-
ical device speed itself. Here we do this in some detail for
the case of the surface code in superconducting qubits, and
in passing for ion traps. We hope that this discussion will
elucidate several avenues through which breakthroughs in
error correction might materially change the analysis in the
main text.

To begin, we assume that there is a physical two-qubit
operation and syndrome measurement speed, T and T,
where 7, > T as 7 is used to build measurement circuits
along with a base physical measurement time t,,. Modern
fault-tolerant error correction proceeds via rounds of syn-
drome extraction, processing, and correction to implement
gates. The core physical operation of these rounds on the
device is measurement of syndromes, and we are hence
lower-bounded by the measurement time t; in realistic
settings. For context, estimates of these times for high-
fidelity superconducting qubits that would be realistic on
improvement are T &~ 10 ns and 7, = 100 ns.

For a networked ion trap device, there are extra nuances
in estimating a realistic syndrome measurement speed [55].
Currently, high-fidelity two-qubit gates and measurements
take T &~ 100 us and t,, = 10 pus [43,56], although high-
fidelity microsecond gates have also been demonstrated
[32]. Most proposals are limited by a typical trap frequency

of approximately 1 MHz, although this limit is not funda-
mental [31], and submicrosecond gate times are possible
[30].

In addition, communicating between different crystals
will likely introduce significant overhead. When photonic
interconnects are used, the mean connection rate between
different modules will be fundamentally limited by the
emission rate, which for typical atomic transitions into
free space will be approximately 100 MHz. However,
current state-of-the-art entanglement generation occurs in
the approximately-200-Hz regime [57]. When accounting
for fractional light collection and single-photon detector
efficiency, we can ambitiously estimate future mean con-
nection rates of approximately 10 kHz [39,41], which may
be amplified by generation of entanglement in parallel at an
additional cost in space. Without photonic interconnects,
shuttling and cooling will introduce additional slowdowns
[36], and can currently take hundreds of microseconds
[37]. With photonic interconnects, shuttling may still be
required to isolate memory ions from light scattered during
entanglement generation, although this can be mitigated
by use of a different atomic species for communication
[58—60].

None of these components are fundamentally limited
below approximately 1 MHz. However, many of them
must act several times in concert to measure a single round
of syndromes. Consequently, 7, = 100 us seems an ambi-
tious goal, and is commensurate with earlier estimates
[40-42].

If one had perfect operations, but still performed gates
via a synthesized and fault-tolerant protocol, these would
lower-bound the achievable runtime for a gate. As our
operations are not perfect, however, we will need to encode
in an error-correcting code with some distance d that is
chosen on the basis of the error rate in our device, the
threshold of the code, and the total number of operations
we expect to perform. If one is allowed to use numerous
ancilla qubits, this need not increase the runtime of indi-
vidual operations by exploiting parallelism through tele-
portation and space-time optimization [61,62]. However,
more qubit spartan implementations must use d rounds of
measurement and correction to protect against measure-
ment errors in the time direction, adding a factor of O(d) in
the time cost. Research into one-shot correction techniques
hopes to alleviate this time dependence on d without exces-
sive space overhead [63], but current code constructions
are not readily implementable.

On top of each round of these measurements, we must
account for the time for this information to leave the
device, be processed via decoding, and in some cases
implement active recovery after a gate, where this time
depends on the hardware and the complexity of the decod-
ing. For error correction to be efficient, it must be possible
to process the syndrome data without an accumulation of
rounds that grows in time. If we denote this processing

010103-7



RYAN BABBUSH et al.

PRX QUANTUM 2, 010103 (2021)

latency as /,, then the time for processing d rounds is lower-
bounded approximately by the time it takes to produce
those syndrome measurements on the physical device plus
this latency, or dt; + /.. Depending on the implementation
details, /, is likely to depend on d, but with sufficient classi-
cal parallelization, it may be possible to make it effectively
independent of d.

On top of these costs, each gate has some associated
prefactor in the number of rounds that depends on the type
of gate and its logical locality, Cg. For easy, or Clifford,
gates in most codes, C can be made near 1. Unfortunately,
to perform universal computation, one requires a gate that
is not easy to implement [64], and common proposals cen-
ter on state distillation, where the prefactor Cg is often on
the order of 10. Moreover, if one considers synthesis of
arbitrary rotations into several of these hard gates, Cs can
multiply by a factor of 10 or more depending on the preci-
sion, leaving Cg on the order of 100. Putting these together,
we can approximate a lower bound on the quantum gate
time scaling in terms of error-correction parameters as

t¢ x Cg (dts + 1,). (A1)
Now that we have a general picture of how the time
overhead enters for quantum error correction, we exam-
ine it in a specific gate and context. In particular, we
focus on superconducting qubits with feasible error rates
and operation times within the surface code. Toffoli gates
are required to implement classical logic on a quantum
computer but cannot be implemented transversally within
practical implementations of the surface code. Instead, one
must implement these gates by first distilling resource
states. To implement a Toffoli gate, one requires a CCZ
state (|CCZ) = CCZ |+ + +)), and these states are con-
sumed during the implementation of the gate. Distilling
CCZ states requires a substantial amount of both time
and hardware, and thus they are usually the bottleneck in
realizing quantum algorithms within the surface code.

Here we focus on the state-of-the-art Toffoli factory con-
structions of [13] that are based on applying the lattice
surgery constructions of Ref. [24] to the fault-tolerant Tof-
foli protocols of Refs. [25,26]. Using that approach, one
can distill one CCZ state using two levels of state distilla-
tion with 5.5 d + O(1) surface code cycles and a factory
with a data qubit footprint of about 12 d x 6 d, where d is
the code distance (the total footprint includes measurement
qubits as well, and is thus roughly double this number).
Hence for the Toffoli gate, we take Cs ~ 5.5.

We assume a correlated-error minimum weight per-
fect matching decoder capable of keeping pace with 1-us
rounds of surface code error detection [65], and capable of
performing with a similar latency of feedforward in about
1 us for d around 30, and conservatively lower-bound the
overall time for d rounds to then be dz, + [, < 30 us. We
also assume physical gate error rates on the order of 1073,

which we hope will be achievable at scale in the next
decade. Since we expect to require on the order of bil-
lions of Toffoli gates to achieve quantum advantage for
practical applications (we will see this is actually a sig-
nificant underestimate for the case of quadratic speedups),
we assume that a code distance d on the order of 30 will
be sufficient (since errors are suppressed exponentially in
code distance, this number will be approximately correct).

With these assumptions, our model predicts a Toffoli
gate time tg = Cg(dts +[,) = 5.5 x30 us =~ 170 us.
This rough approximation matches the more detailed
resource estimate that shows the space-time volume
required to implement one Toffoli gate is approximately 23
qubit seconds [13]. We discuss the resources required for
distillation in terms of qubit seconds because it is generally
possible to make trade-offs between space and time but the
critical resource to be minimized is actually the product
of the two. Under these assumptions, we would be able to
distill a Toffoli gate in about 170 ps using around 130 000
physical qubits (see the resource estimation spreadsheet
in Ref. [13] for detailed assumptions). Because of this
large overhead we focus on estimates assuming we dis-
till CCZ states in series, which is likely how we would
operate early fault-tolerant surface code computers. For
comparison, if ion trap devices used a similar surface code
implementation and error rates while achieving syndrome
measurement time t; = 100 us in parallel, the gate time #¢
assuming Cs ~ 5.5 is approximately 17 000 us, or roughly
a factor of 100 slower.

To make this more concrete, we can convert this to a
unitless error-correction overhead for a particular gate of
Cs(dts + 1) /1. If we keep the 30-us overall bound for
dt, + I, and make a reasonable estimate for the improve-
ment of physical syndrome measurement times for super-
conducting qubits to 100 ns, then the error-correction
overhead at this distance is 1700.

This suggests that at present for superconducting qubits,
the most fruitful improvements with regard to algorith-
mic speed are the reduction of the decoding time, the
minimization of time overheads in distillation factories,
and then the reduction of the number of measurement
rounds required to protect the state against errors in the
time direction, perhaps through improved gate fidelities
for equivalent operation times to result in lower required
distances or through single-shot protocols. If this can be
achieved, the next milestone would be the reduction of
physical syndrome extraction time. However, even such
advances would make the prospects for realizing a quan-
tum advantage with quadratic speedups considerably more
enticing.

APPENDIX B: ALTERNATIVE APPROACHES

Throughout this work, we focus on the time cost of sur-
face code implementations of non-Clifford gates, as the
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expense of such gates has been highly optimized given
the connectivity constraints of a superconducting quantum
device. Furthermore, the surface code is one of the few
error-correction schemes that can operate efficiently in the
high-noise regime, with gate infidelities in the range of
1073 [21,66].

However, there are limitations when one is consider-
ing a two-dimensional architecture. We chose to report on
the time cost of logical gates (while keeping the space
cost low). By this metric, transverse gates are minimally
expensive, yet non-Clifford gates cannot be implemented
transversally in the surface code. In fact, any constant
depth circuit on a 2D local stabilizer code must be of
Clifford type [67], often leading to a time dependence
on d. Additional connectivity in the device—and likely a
requirement of lower error rates—opens up many more
avenues toward universal fault-tolerant logic. Beyond
magic state distillation, contemporary approaches include,
but are not limited to the following:

1. Computing with three-dimensional local codes,
where non-Clifford gates are transverse [68] (and
may be realized dynamically in two dimensions
[69,70])

2. Code switching between codes with complementary
transverse gate sets [71]

3. Fixing the gauge of subsystem codes, where differ-
ent gauges admit different transverse gates [72,73]

4. Concatenating codes, each supporting a comple-
mentary transverse gate set [74]

5. Pieceable fault tolerance, which breaks nontrans-
verse gates into fault-tolerant pieces [75,76]

For non-Clifford gates, there are trade-offs that can be
made to mitigate the distance and routing overhead of
our bound at the expense of many more qubits. Whether
these constructions may yield a lower space and time over-
head at reasonable error rates is speculative. Numerical
studies of alternative schemes have yet to show a con-
vincing advantage [77,78], and often require error rates
of less than 1073 to operate efficiently, although their
space-time footprint can be smaller [69]. Nonetheless,
significant optimizations or new approaches are likely
needed to recoup a reasonablely sized quadratic quantum
advantage.

A separate avenue toward reducing the space overhead
of error-correction are block encodings. While surface
codes are robust, they require very many qubits per log-
ical qubit. More generally, 2D local code families are
fundamentally restricted to have a vanishing ratio of log-
ical qubits to physical qubits, assuming an underlying
growing code distance [79,80]. In an all-to-all connected
device, a nonvanishing rate is possible without sacrificing
the low stabilizer weight often essential for good per-
formance [81]. In particular, there have been promising

numerical studies of high-density memories in idealized
noise settings using variations on efficient belief propaga-
tion decoding [82,83].

For the purposes of our bound, we assume first-
generation fault-tolerant devices will support hundreds of
logical qubits each with distance d ~ 30, and few distil-
lation factories. The total qubit footprint of such a device
will remain in the 10°-10° qubit range. By comparison,
there exist intermediate-size families of block codes that
can encode hundreds of logical qubits using only 10°—10*
qubits. However, it is difficult to predict the consequences
of using such encodings in the context of our computation-
time bound. The required physical error rates may be
untenably low, with relatively few studies predicting per-
formance in circuit-level error models [84]. In addition,
performing gates efficiently on such codes is a difficult
task [85,86]. Therefore, while a significant reduction in
memory space may result, the role of such codes in future
fault-tolerant devices remains unclear.
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