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The last decade has witnessed remarkable progress in the development of quantum technologies.
Although fault-tolerant devices likely remain years away, the noisy intermediate-scale quantum devices
of today may be leveraged for other purposes. Leading candidates are variational quantum algorithms
(VQAs), which have been developed for applications including chemistry, optimization, and machine
learning, but whose implementations on quantum devices have yet to demonstrate improvements over
classical capabilities. In this Perspective, we propose a variety of ways that the performance of VQAs
could be informed by quantum optimal control theory. A major theme throughout is the need for sufficient
control resources in VQA implementations; we discuss different ways this need can manifest, outline a
variety of open questions, and look to the future.
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I. INTRODUCTION

The development of large-scale, fault-tolerant quantum
computers would enable diverse and disruptive applica-
tions, such as the ability to break modern encryption proto-
cols using Shor’s factoring algorithm [1] and to efficiently
simulate the dynamics of complex quantum systems [2].
Although significant progress has been made [3], persis-
tent technological challenges in current quantum devices
means they cannot yet serve as platforms for implement-
ing these landmark algorithms at scale. As such, a major
goal is to identify classically difficult problems that could
be solved with these noisy intermediate-scale quantum
(NISQ) [4] devices.

This goal has motivated the development of variational
quantum algorithms (VQAs) for a variety of applications,
including ground-state chemistry [5], optimization [6], and
machine learning [7]. In VQAs, the problem to be solved is
reformulated as an optimization problem, whose solution
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is sought using quantum hardware and classical optimiza-
tion in concert [8]. The quantum device is used to evaluate
the objective function, which is accomplished via a rela-
tively shallow, parametrized quantum circuit applied to an
appropriately initialized register of qubits, after which the
value of the objective function can be determined by mea-
suring the register. Meanwhile, the classical coprocessor
iteratively optimizes the parameters of the shallow quan-
tum circuit. To date, hardware implementations of VQAs
have not yet demonstrated improvements over the capabil-
ities of classical computers, and the aim of this Perspective
is to examine how progress can be made towards meeting
this milestone in the future. In particular, this Perspective
considers VQAs, their associated challenges, and potential
paths forward, through the lens of quantum optimal con-
trol. To motivate this choice, we first look back and review
certain aspects of the research efforts that have led us to the
NISQ era of today.

We begin by recalling early efforts to create quantum
computers, which focused on developing methods to con-
trol their components, and involved one or a few qubits
[9,10]. In these experiments, control was typically real-
ized using electromagnetic fields or “pulses” designed to
drive the dynamics of the qubits in a desired fashion.
Techniques for qubit control were studied extensively,
especially in the context of implementing high-fidelity
entangling gates between qubits, as this is a necessary
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FIG. 1. The quantum-classical optimization loop used in VQA
and QOC experiments is shown. The quantum device (green)
evaluates the objective functional, whose value is determined
via measurements and input into a classical computer (yellow),
which updates the optimization parameters. In conventional
QOC experiments, these parameters are defined at the pulse level
(a), and serve to parametrize a set of control fields {fk(t)} enter-
ing in a Hamiltonian describing the physics of the system. In
VQAs, the parameters typically enter at the circuit level (b), via
a set of gates parametrized through a set of e.g., gate angles {θi}.
In this Perspective, we explore how VQAs may be informed by
returning to a more physical, pulse-level description inspired by
QOC.

ingredient for quantum computation in the gate model.
One method, quantum optimal control (QOC), stands out
for its ability to improve gate fidelities beyond what other
techniques could offer [11,12]. In QOC, an objective func-
tional is defined that quantifies how well a desired control
task is achieved; then, the pulses to minimize the objective
functional are sought using iterative optimization methods
[13].

Following these early demonstrations of qubit control,
devices began to scale up to higher qubit counts, which
has led to the advent of the NISQ era today, and in
tandem, to the development of VQAs. These concurrent
developments have inspired significant research on circuit
compilation and optimization [14–16], similar in spirit to
many of the earlier efforts that studied pulse optimiza-
tion in the context of QOC. Thus, the reach of technology
and the focus of the community have broadened “from
pulses to circuits.” In this Perspective, we explore how
the development of VQAs can be informed by going
from the circuit level “back again” to the pulse level to
strengthen ties to QOC and leverage results and tools from
this well-developed field.

As illustrated in Fig. 1, we explore this prospect by
framing VQA implementations and QOC experiments as
quantum-classical optimization loops; in the former (b),
the optimization is done over quantum circuit elements, in

contrast to a conventional QOC experiment (a), where the
optimization is performed over a set of continuous pulses.
We remark now that although the parametrized quantum
circuits in (b) are formed by gates, which are in turn imple-
mented using pulses, a user seeking to implement a VQA
typically has no need for any knowledge of what hap-
pens at the pulse level, which offers a layer of abstraction
separating the user from the underlying hardware physics.

With this unifying picture in mind, we now describe the
remainder the this article. We begin by introducing the con-
cept of VQAs and discussing their current state in Sec. II.
We then discuss QOC theory in Sec. III and review connec-
tions that have been made to VQAs to date in Sec. IV. In
Sec. V we present a hierarchy of abstractions in variational
optimization that serves to provide a common framework
for VQA and QOC experiments. This is followed by
an in-depth discussion of QOC-motivated future research
directions aimed at addressing four important challenges
associated with VQAs: ansatz selection, optimization
landscapes, noise, and robustness. In each of these cases,
we emphasize the need for appropriate control resources to
enhance the performance of VQAs. Finally, we conclude in
Sec. VI with a look ahead.

II. VARIATIONAL QUANTUM ALGORITHMS

Variational quantum algorithms seek to solve problems
by leveraging the dynamical and representational power of
quantum computers in conjunction with classical comput-
ers. They do so by reformulating problems of interest as
the minimization of some objective or loss function J [{θi}]
over a set of parameters {θi}, as

min
{θi}

J [{θi}], (1)

where {θi} parametrizes a quantum circuit

U({θi}) =
∏

i

Ui(θi), (2)

on n qubits. The objective function can be nonlinear in the
general case, such as cross-entropy for machine learning.
However, for reasons of simplicity, it is often formulated
as the minimization of the expectation of a linear operator
Hp , referred to as the “problem” Hamiltonian [17]:

J [{θi}] = 〈ψ({θi})|Hp |ψ({θi})〉, (3)

where the state of the qubits at the culmination of the cir-
cuit is |ψ({θi})〉 = U({θi})|ψ0〉, with |ψ0〉 denoting their
fixed initial state. Exact minimization of J corresponds to
the preparation of the ground state of Hp .

The set of variational parameters {θi} that minimize
J [{θi}] are sought iteratively, where at every iteration,
J [{θi}] is evaluated by preparing the qubits in the
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state |ψ0〉, applying a circuit U({θi}) with a particular
parametrization {θi}, and then measuring a set of qubit
observables to estimate J [{θi}]. This can be accomplished
by expanding Hp in the Pauli operator basis as per Hp =∑N

j =1 αj Pj , where αj are scalar coefficients, Pj are ten-
sor products of Pauli operators that are easy to measure
on a quantum device, and N = O[poly(n)] [18], and then
measuring the expectations of each of the N Pauli basis
operators in the expansion. Due to the stochastic nature
of measurement in quantum mechanics, repeated mea-
surements on an identically prepared state |ψ({θi})〉 are
needed to estimate these expectations. Then, the expecta-
tion value of Hp can be computed to determine J by classi-
cally evaluating the weighted sum 〈ψ({θi})|Hp |ψ({θj })〉 =∑N

j =1 αj 〈ψ({θj })|Pj |ψ({θi})〉. After the value of J [{θj }]
has been evaluated in this manner, a classical optimization
routine is then used to iteratively update the values of {θi}
until convergence. Using this method to estimate the value
of J [{θj }] to a specified precision ε requires a number of
repreparations and measurements of the state that scales
as Ns ∝ λ2/ε2, where λ = ∑

j |αj | [19]. Recent work has
shown that clever grouping of terms and other techniques
can be used to reduce the naive scaling of these measure-
ments by orders of magnitude, even with techniques in
the near term [20]. As quantum computers advance, it is
possible to improve the scaling of this estimation even fur-
ther using techniques that leverage phase estimation, but
the increased resource costs for such approaches can be
prohibitive.

For practical reasons, the circuit represented by U({θi})
is usually assumed to be formed by a sequence of ele-
mentary one- and two-qubit gates drawn from a specified
gate set, which is constructed and parametrized accord-
ing to a particular ansatz. However, we remark here that
knowledge of how the parameters {θi} explicitly enter
into the circuit is not always required, as J [{θi}] is eval-
uated via measurements using the quantum device. That
is, the method is robust to many types of labeling errors,
since properties of the quantum system rather than specific
parameter values are of interest. This means that VQAs
possess some degree of robustness to drifts, crosstalk, and
other systematic errors that can occur during the imple-
mentation of the circuit [21], which is a primary reason
why VQAs are believed to be a way to derive practical
algorithmic use from NISQ devices.

Furthermore, we note that the choice of ansatz for
any VQA is a crucial step. Although there is no gen-
eral approach for developing good ansätze, they are
often derived from physical intuition (e.g., the QAOA
ansatz, see below), knowledge of states generated by
a particular ansatz (e.g., the coupled-cluster ansatz, see
below), or practical convenience (e.g., hardware-efficient
ansätze [5,22]). A critical feature of an ansatz is that
it should be scalable, i.e., having a circuit depth that
scales as O[poly(n)] for an n-qubit quantum computer.

Furthermore, the number of variational parameters {θi}
should also scale as O[poly(n)].

VQAs have been developed for numerous application
areas including machine learning [7], linear systems [23],
and the compilation of quantum circuits [24]. However,
the first application area for VQAs was the ground-state
problem in quantum chemistry [8,25]. In this context, the
variational quantum eigensolver (VQE) was developed as
a VQA for seeking the electronic ground state of a chemi-
cal system in a field of fixed nuclear charges. The solution
of this chemistry problem has a variety of applications,
including in chemical reaction prediction, the determi-
nation of molecular properties, etc. One common ansatz
is the unitary coupled-cluster ansatz [5,26], which is a
norm-preserving variant of the common coupled-cluster
ansatz used in quantum chemistry, which constructs a size-
extensive ansatz through an exponential parametrization.
Due to its unitary formulation, it naturally preserves phys-
ical properties of the state, but it is not efficient to evaluate
classically. It represents an example of a structured ansatz
that carries the fermionic structure into its translation into
gates after the use of a Jordan-Wigner transformation and
Suzuki-Trotter splitting. Strictly speaking, this formulation
represents a slight deviation from the formal construction
[27], but the construction remains unitary, independent of
the choice of parameters, and upon repetition it can be
used to express arbitrary states within the manifold of fixed
particle number.

With the evidence that NISQ devices can achieve clas-
sically intractable, but perhaps not useful, tasks [28], there
is a belief that variational preparation of ground states of
correlated systems may represent one of the first classi-
cally intractable and useful roles for NISQ devices. As
such, the study of correlated quantum systems remains
a major objective for NISQ devices, and is a focus
of many experimental and theoretical efforts at present.
VQE demonstrations have been shown experimentally
on a variety of photonic, ion trap, and superconducting
qubit setups in combination with error-mitigation tech-
niques [21,22,29–33]. Indeed the discrepancy between
available qubits in current quantum devices (� 50
qubits) and the number used in VQE experiments (�
10 qubits) is that the impact of noise makes the exper-
iments incompatible with the high accuracy necessary
to claim an application advantage. With the help of
error mitigation from symmetries in the reduced sub-
space, the largest variational calculation performed to
chemical accuracy on a quantum computer utilized 12
qubits and approximately 200 quantum gates to simu-
late a 12-atom hydrogen chain [34]. Using more qubits
will require advances in both hardware and error-reduction
techniques.

Another major application of VQAs is combinatorial
optimization. In this domain, the quantum approximate
optimization algorithm (QAOA) has been developed as a
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variational method for determining approximate solutions
to combinatorial optimization problems, by encoding them
into diagonal Ising Hamiltonians, such that the solution of
the problem is encoded in the ground state of the Hamilto-
nian [6]. QAOA seeks to find the solution by variationally
minimizing the expectation value of the Ising Hamiltonian.
Unlike the VQE, the QAOA ansatz is typically fixed, and
consists of an alternating sequence of unitary operations
generated by the problem Hamiltonian Hp , and a so-called
“driver” Hamiltonian, which does not commute with the
problem Hamiltonian, and is denoted by Hd. Explicitly,
the QAOA ansatz is formed by p rounds of alternating
applications of these two Hamiltonians,

U({θi}) =
p∏

j =1

exp
(−iβj Hd

)
exp

(−iγj Hp
)
, (4)

where {θi} is the set of variational parameters {βj , γj }, and
the true optimum for the original combinatorial optimiza-
tion problem can be achieved as p → ∞ [6].

QAOA has been implemented experimentally using
superconducting circuits for up to 23 qubits [35–39], a
photonic system with two qubits [40], and trapped ions
with up to 40 qubits [41]. Due to limited qubit coher-
ence times, most of these implementations (with some
exceptions [37,39]) considered combinatorial optimization
problems defined on the connectivity graph of the hard-
ware only, keeping circuit depths at a minimum. Recently,
it has been shown that success in quantum optimization can
be related to increased flexibility in the training landscape
of a continuous extension of the original problem [42],
which is connected to the condition of full controllability
in quantum control theory. Furthermore, although in the-
ory, the ansatz with higher p should improve on the quality
of the solutions achievable at lower p , they also require
deeper circuits. So in practice, the effects of noise and
decoherence may negate any improvements in quality. For
this reason, most experiments implemented a single round
of QAOA only, i.e., p = 1. These cases involved only
two parameters whose optimal values could be obtained
analytically, meaning that a variational optimization loop
was not necessary. However, in recent superconducting cir-
cuit experiments it was shown that going to p = 2 [38] or
p = 3 [39] and performing the optimization could improve
the solution quality beyond p = 1.

Although these recent hardware demonstrations show
a promising trend, the ultimate goal of implementing
VQAs to solve problems that are intractable classically
has yet to be reached. The path towards meeting this goal
will involve a confluence of theoretical and experimen-
tal progress. In the following, we propose a few ways
that this progress could be informed by QOC. In partic-
ular, we focus in on how methods and results from QOC
could be leveraged to address VQA challenges associated

with ansatz selection, optimization landscapes, noise and
robustness. Before getting to this, we first introduce QOC
and discuss its connections to VQAs.

III. QUANTUM OPTIMAL CONTROL

The aim of QOC is to design one or more electromag-
netic fields or “pulses” to steer the dynamics of a quantum
system towards a desired control target, which can be a
state, observable expectation value, or evolution operator,
at some terminal time T. A standard formulation in QOC
seeks to minimize a control objective functional J [{fk(t)}]
over {fk(t)}, as [43–47]

min
{fk(t)}

J [{fk(t)}], (5)

where J [{fk(t)}] includes the control target and physi-
cal constraints, often along with other criteria, which can
be defined to represent available laboratory resources or
quantify robustness to errors or uncertainties [48].

The set of pulses {fk(t)} used in QOC are typically con-
sidered to be classical fields in the semiclassical approxi-
mation [49], in contrast to fully quantized fields. In addi-
tion, the wavelengths of the fields are typically assumed
to be much greater than the size of the controlled quan-
tum system in the dipole approximation [49], such that
the control fields {fk(t)} typically enter the time-dependent
Hamiltonian H [{fk(t)}], as follows [50,51]:

H [{fk(t)}] = H0 +
∑

k

fk(t)Hk, (6)

where H0 is the drift Hamiltonian describing the time-
independent system and {Hk} is the set of control Hamil-
tonians that couple the fields to the system, e.g., via dipole
interactions. The dynamical equation for the system time-
evolution operator Ut is given by the Schrödinger equation
U̇t = −iH [{fk(t)}]Ut, with U0 = 1 (throughout this article,
we set � = 1). This is a bilinear control system, making
an analytical formulation of QOC solutions intractable in
general [50–52]. Its formal solution reads

Ut[{fk(t)}] = T e−i
∫ t

0 dt′ H [{fk(t′)}], (7)

where T indicates time ordering, such that the system state
at time t is given by |ψ(t)〉 = Ut|ψ0〉 where |ψ0〉 is the
initial state.

In analogy to the formulation of VQAs in Eqs. (1) and
(3), we now turn our attention to the QOC problem in Eq.
(5), where we define

J [{fk(t)}] = 〈ψ(T)|Hp |ψ(T)〉, (8)

such that (unconstrained) {fk(t)} are sought to minimize the
expectation value of Hp at a designated time T. Solutions
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of this QOC problem, subject to the dynamical constraint
that |ψ(t)〉 evolves according to the Schrödinger equation,
are stationary points of the control objective functional J ,
given the initial condition |ψ(0)〉 = |ψ0〉. Optimal control
fields can be constructed iteratively via the corresponding
Euler-Lagrange equations [53]. To this end, a plethora of
methods have been developed for updating the QOC solu-
tions, including GRAPE [54], Krotov [55–57], TBQCP
[58–60], D-MORPH [61–63], and SCP [64], until specified
optimality or convergence criteria are satisfied.

In practice, the minimization of J is usually accom-
plished by first parametrizing one or more continuous
control fields by a set of variables {ci}, such that the
Hamiltonian describing the controlled system becomes

H(t, {ci}) = H0 +
∑

k

fk(t, {ci,k})Hk. (9)

Common parametrizations include setting {ci} to be the
amplitudes and phases of a set of frequency components
of the field, or setting {ci} to be piecewise-constant field
amplitudes in the time domain. Then, the objective is to
optimize {ci} to generate UT({ci}) = T e−i

∫ T
0 H(t,{ci})dt such

that the control objective functional J [{ci}] is minimized
at the terminal time T. In practice, this minimization is
typically performed in an iterative fashion. If a tractable
and accurate model is available, this iteration can be per-
formed numerically. However, it can also be carried out
experimentally via learning control [65–70], which does
not require knowledge of the underlying system model.
Instead, at each iteration of such QOC experiments, J [{ci}]
is evaluated by first preparing the system in a specified
initial state, then evolving it in the presence of applied
fields with parametrization {ci}, and finally measuring
the observable expectation value(s) needed to estimate
J [{ci}]. A classical optimization routine is used to update
the values of {ci} from one iteration to the next, until
J [{ci}] converges [65]. In this manner, objective func-
tional evaluations are performed by the quantum system
directly, inherently accounting for parameter uncertainties
and other systematic errors, limitations, etc.

This quantum-classical optimization loop associated
with QOC at the pulse level is directly analogous to the
procedure used in VQA implementations at the circuit
level, as shown in Fig. 1. In fact, if one has access to
the quantum circuit at the pulse level, then Eq. (1) can
instead be solved by optimizing over the set of continu-
ous pulses {fk(t)} that are available. As such, we consider
VQA implementations to be a form of digital QOC exper-
iment on qubits, where the quantum circuit generating
the unitary transformation U({θi}) is designed directly,
through the selection and optimization of a parametrized
unitary ansatz. In general, the depth, dimension, and struc-
ture of the ansatz, as well as the continuous and discrete
parameters within it, are all tunable, giving the resulting

optimization space both continuous and discrete degrees
of freedom.

In the past few years, this fundamental relationship
between QOC and VQA has been exploited to derive
a deeper understanding of VQAs and novel variational
strategies for quantum computing problems. In the follow-
ing section, we review some of this work at the intersection
of VQAs and QOC.

IV. PRIOR WORK CONNECTING QOC WITH
VQAS

As argued above, standard parametrized quantum cir-
cuit ansätze can be viewed as examples of digitized QOC
implementations. There are many benefits to relaxing, or
embedding, such digitized ansätze into a continuously
(in time) parametrized framework, similar to the typical
setting in QOC. Such a relaxation often allows one to elim-
inate any discrete optimization component of the problem,
and more importantly, by formulating VQAs within a stan-
dard control theory setting, this enables one to apply many
powerful methods and results of optimal control theory.
Of course, any relaxation of a parametrized ansatz into
a continuous-in-time ansatz must be done in a way that
is consistent with the capabilities of the available control
hardware—e.g., since most quantum computing platforms
have native one- and two-qubit gates, the natural contin-
uously parametrized ansätze will be composed of pulses
that address individual qubits or the coupling between two
qubits.

An early example of work with this reformulation
is by Yang et al. [71], who used a continuously
parametrized formulation of variational quantum optimiza-
tion to demonstrate that a bang-bang approach (similar to
the alternating structure of QAOA) is optimal for prepar-
ing the state encoding the optimization solution, given
amplitude-constrained control fields and a finite time to
solution. This is achieved by applying Pontryagin’s min-
imum principle [53] to the continuously parametrized
formulation of the problem. Similarly, Lin et al. apply Pon-
tryagin’s minimum principle associated with time-optimal
quantum control to Grover’s quantum search problem, and
find that the time-optimal control solution has a bang-
singular-bang structure [72].

Another direction has considered connections between
the QOC concept of controllability and the quantum com-
puting concept of computational universality [73]. In brief,
controllability is the study of which control objectives can
be realized with a given set of controls and constraints.
For unconstrained control fields, the dynamical Lie alge-
bra L, formed by iterated commutators of the drift and the
control Hamiltonians and their real linear combinations, is
a powerful tool for deciding these matters. In particular,
the dynamical Lie algebra gives rise to the Lie rank cri-
terion [50,51], which states that if L spans the full space
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[i.e., the special unitary algebra su(2n) for a n qubit sys-
tem], then every unitary transformation V ∈ SU(2n) can be
created to arbitrary precision in finite time by shaping the
control fields, and the system is said to be fully operator
controllable. A vast literature characterizing the control-
lability of quantum systems has been developed in recent
decades [74–86]. More recently, the relationship between
controllability and computational universality was utilized
in Refs. [87,88] to show that the QAOA ansatz is universal
for quantum computing for specific choices of the problem
Hamiltonian. In addition, Mbeng et al. made connections
between digitized quantum annealing, QAOA, and QOC,
e.g., analyzing the number of angles that are needed for
controllability [89], while Akshay et al. examined reacha-
bility deficits in QAOA, providing strategies for improving
reachability [90].

Some groups have investigated using the QAOA ansatz
for bang-bang control of state transitions in quantum spin
systems, e.g., Refs. [91–93], exploring robustness and
reachability as a function of the ansatz depth. In addition,
Bapat and Jordan analyzed the performance of bang-bang
control protocols for optimization algorithms, showing that
on certain problem instances, these protocols can yield
an exponential speedup for both classical and quantum
optimization, compared with quasistatic scheduling [94].
Using QOC, Brady et al. [95] investigate the optimal
continuous-time control solution for preparing an approx-
imation of a ground state with a time-dependent Hamilto-
nian that is the sum of the driver and problem Hamiltonians
found in QAOA, and the total evolution time is fixed.
They demonstrate that the optimal solution can in fact be
more general than the bang-bang solution identified by
Yang et al. [71], because an assumption made in that work
(the absence of “singular” intervals) is not generally valid.
With a careful variational analysis, along with numerical
simulations of various tranverse-field Ising models, Brady
et al. argue that the more general form of the optimal
QAOA variational schedule is a bang-anneal-bang sched-
ule, whereby the control parameters take extreme values
at the beginning and end of the time interval, but take on
intermediate values that smoothly vary during intermedi-
ate times. With a fermionic representation, Wang et al. [96]
show that the evolution of a quantum system implement-
ing QAOA on the so-called “ring of disagrees” problem
translates into QOC of an ensemble of independent spins,
thereby simplifying the determination of the optimal angle
vectors. On a related note, Wu et al. propose a scheme to
machine learning tasks into corresponding QOC problems
on NISQ devices [97].

Recently, several groups have proposed adaptive, vari-
ational, or QOC-inspired approaches to design improved
VQA ansätze [98–103]. For example, the approach devel-
oped in Refs. [98–100] uses derivative information to
adaptively modify the circuit depth and ansätze structure
using a “pool” of predetermined single- or multiqubit

Hamiltonian operators. Whereas, in the context of quan-
tum chemistry, the approach presented in Ref. [101] uses
a set of QOC-informed driving Hamiltonians to generate
VQA ansätze with symmetry-breaking features that can
decrease the circuit depth required for convergence. Sim-
ilarly, Ref. [102] proposes ansätze determined by QOC at
the device level, rather than parametrized quantum circuits,
to perform VQE simulations. These last works especially
strengthen the connections between QOC and VQAs, and
provide a natural segue to the next section, where we out-
line some promising new directions of research at this
intersection.

V. NEW DIRECTIONS FOR VQAS INFORMED BY
QOC

A unifying view of VQAs and QOC can be obtained by
viewing both as formulations of variational optimization
at different levels within an abstraction hierarchy. This is
illustrated in Fig. 2, which we now discuss. We first assume
that the objective function J , determined by the applica-
tion, is shared between the two approaches. Then, one can
think of experimental ways to evaluate J within a hierar-
chy of abstractions modeling the experimental hardware.
At each level (i)–(iii) of this hierarchy, there is a natural
parametrization of the control one has over the hardware
and this defines a natural variational ansatz at that level.

At the bottom of this hierarchy is a pulse-level abstrac-
tion (i), where we are closest to a first-principles model
of the hardware and think in terms of Hamiltonians for

Error-correction
encoding

Error-correction
decoding

FIG. 2. A representation of the hierarchy of abstractions used
to model quantum hardware, and how variational optimiza-
tion enters into each level of the hierarchy. Output produced
by the hardware is the desired objective function, J , which is
parametrized in different ways by each level of the hierarchy—by
control-field parameters ci at the pulse level (i), by circuit param-
eters (usually angles θi) at the quantum circuit level (ii), and by
the structure of the circuit and the encoding and decoding maps
(Eφ and Dφ) at the logical circuit level (iii). By understanding
the relationship between the natural variational parametrizations
at each of the levels, we can develop a rich family of variational
ansätze.
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the localized computing elements (e.g., qubits, qudits) and
fields coupling them. At this level, the parametrization of
control is in terms of a continuously parametrized con-
trol field or control Hamiltonian (with parameters ci) that
is often realized by a set of electromagnetic fields, which
are coupled to the computing elements. QOC typically
operates at this level of the modeling hierarchy.

In the middle of the hierarchy (ii), we abstract away
first-principles descriptions of the hardware and think in
terms of universal circuit elements, or gates, that (ideally)
perform well-defined maps on the computing elements.
Although there might be a discrete set of types of gates,
they can be continuously parametrized by some set of gate
parameters {θi}. VQAs typically operate at this level of the
modeling hierarchy.

Finally, at the highest level of the modeling hierar-
chy, the logical circuit level (iii), we think in terms of
circuits operating on quantum states encoded within an
error-correcting code. Any physical circuit at the circuit
level of abstraction can be converted into a logical circuit
given an error-correcting code and its associated logical
gates, with an error rate that is determined by the code and
the hardware. Strictly speaking, with conventional error-
correcting codes, only random errors in discrete gates are
thought to be error correctable to arbitrary precision, thus,
arbitrary rotation gates depending on θi are synthesized
as a sequence of discrete gates, which performs this rota-
tion to a specified precision. Hence, the rotation angle θi is
still present in the logical circuit, but only up to the pre-
cision that is given by the synthesis and code procedure.
In practice, one may optimize the angle as if it is contin-
uous, so long as the synthesis map is performed after, and
the precision is great enough to impact the optimization in
practice. Error-corrected quantum computing experiments
operate at this level of the modeling hierarchy, and bene-
fit from decreased susceptibility to hardware noise due to
the encoding and careful implementation of fault-tolerant
operations.

Importantly, an error-correction procedure could be
parametrized and considered as variational parameters
(these are denoted by the collective parameter φ in Fig.
2). This is not done conventionally, but is a new avenue
that opens up when one considers performing VQAs at
the logical level of abstraction. For example, if (even
partial) characterization of the noise sources in a NISQ
device is possible, as shown in Refs. [104–108], effi-
cient quantum error correction (QEC), which can signif-
icantly outperform standard schemes is possible. Unitary
encoding and recovery operations tuned to the range and
“character” of noise-induced uncertainties can be calcu-
lated via a biconvex optimization. The circuit represen-
tations of these channel-optimized unitaries can then be
parametrized. By adding these parameters to the VQA
parameters, the QEC system becomes another part of the
“learning control” environment. Furthermore, continuous

parameters like error likelihoods in decoding could be
adjusted to attempt to improve performance, and even
more sophisticated schemes that allow discrete code modi-
fications could be another potential area of research. While
maintaining fault tolerance under variation of the error-
correction procedure can be challenging, doing such vari-
ational optimization of small encodings could be useful
in the intermediate term where fully fault-tolerant opera-
tion is not feasible, but access to limited error correction is
possible.

A. Ansatz selection

With this hierarchy of modeling abstractions and a
description of variational optimization at each level, we
can exploit the connections between the levels in the hier-
archy to define new and richer variational ansätze, and
in fact, a family of ansätze, built from paths on this dia-
gram. To see this, we explore a few sample paths across
this diagram and understand the implications of following
particular trajectories.

As a first example, we consider a path from the
pulse level (i) to the circuit level (ii). We begin at the
pulse level (i), with a continuous control perspective of
fields acting on n qubits, which is then discretized as
a parametrized control. We now have a time-dependent
Hamiltonian H(t, {ci}) acting on a system of n qubits.
The field of quantum algorithms of simulation of time-
dependent Hamiltonians is well developed, and a range of
methods exist for simulating the time evolution generated
by H(t) over some desired time interval [0, T] to arbitrary
accuracy. Among the simplest is an operator splitting, also
known as “Trotter factorization” [109], but a host of meth-
ods with more accurate implementations without direct
classical simulation analogs, including quantum walk and
so-called linear combinations of unitary approaches, exist
that may also be used [110–112]. Hence, we may under-
stand this step as implying that the parametrized control
can be combined with Hamiltonian simulation to yield a
quantum circuit, whose parametrization is naturally under-
stood at the level of H(t). As such, optimizations proceed
on a landscape determined by a parametrization at the
pulse level (i), despite being implemented at the circuit
level (ii). That is, while arbitrary rotations depending on
some θi exist in the circuit, they are entirely determined
by the composition θi({ci}) in conjunction with the cho-
sen Hamiltonian simulation map. This has the advantage
that this circuit can be converted to a logical circuit by
discretization into error-correctable gates, mitigating the
effects of decoherence while retaining the essential pre-
scription of control. In this case, we retain all of the power
of QOC machinery in manipulating and understanding the
ansatz, while leveraging the power of quantum algorithms
and error correction to ensure theoretical guarantees of
implementation.
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We can take this same path farther, by appending to it
additional gate parametrizations. That is, if Hamiltonian
simulation also maps parametrized control to a circuit at
the quantum circuit level (ii), e.g., Ref. [113], additional
parameters may also be added to the generated circuits,
creating a hybrid ansatz. To explore the full power of these
connections though, let us explore the other direction that
one can take in this perspective.

Consider starting at the quantum circuit level (ii), with
descriptions of hardware in terms of quantum circuits. To
make these circuits realizable, a structure and parametriza-
tion is selected. Once this circuit has been determined,
one can, in principle, map this back to a QOC problem
at the pulse level (i) in a number of ways, where now
the control parametrization depends on the angles from
the circuit such that ci({θi}) is determined through a map
that we denote as “Hamiltonian generation.” This map-
ping is typically nonunique in a more severe way than in
the other direction, especially if one considers mapping
the entire circuit to a generating Hamiltonian, whether it
be time independent or time dependent. However, much
better formed mappings can be used and are related to
existing strategies for gate design. For example, one map
can perform a gate-wise mapping for each parametrized
gate back to the Hamiltonian control parameters ci({θi})
that are used to accurately implement this gate. Similar
to before, a hybrid control ansatz can then be created by
dropping the dependence on θi and allowing free varia-
tion of the parameter ci. This can also be done for fixed
gates without parametrizations in the gate model, increas-
ing the overall expressiveness of the resulting circuit in
a systematic and new way. We see then, that the gate
formulation also naturally provides a family of control
ansätze.

To give a specific example, we consider a system and
ansatz that has received considerable attention in the VQA
literature, which is the preparation of the H2 ground state
in a minimal, molecular orbital basis. Without symmetry
reduction, the ground state of this problem is given by
|
GS〉 = cos θ |0011〉 + sin θ |1100〉. A simplified version
of a circuit that contains this state within its parametriza-
tion is given by

|0〉 Ry(θ)

|0〉 H H

|0〉 X H H

|0〉 X H H

Where, in this diagram, H is the Hadamard gate, Ry is
a rotation about the Pauli Y axis, and the connecting line
is a two-qubit controlled-Z gate, CZ = diag(1, 1, 1, −1).
In this case, variation over the parameter θ provides the
variational freedom required to prepare the ground state.

In addition, as outlined above, we can map back to con-
trol implementations of gates, including those that do not
yet have parameters. For example, a controlled-phase gates
may be written as a time-independent evolution under a
Hamiltonian of the form Hz = c12Z1Z2 + c1Z2 + c2Z2 for
a time τ , up to an unimportant global phase. If this is how
the gate is implemented in our physical system, then the
parameter τ can be added to the list of parameters to create
a hybrid control ansatz. The ansatz in this case includes the
beginning of the circuit, as well as analog evolution under
Hz, which may be implemented by physical means.

Finally, taking the mapping in the other direction,
the evolution under the Hamiltonian H for a time τ in
this case, could be redigitized into a Trotter factoriza-
tion of exp(−iHzτ) = exp(−iτc12Z1Z2) exp(−iτc1Z1) exp
(−iτc2Z2), where each term in the product can be trans-
lated back into a digital sequence, and now we can vary
the set of parameters {θ , c1, c2, c12}, where we retain the θ
parametrization and the rest of the circuit, but add more
controls. Note that for this simple problem, if the imple-
mentation is error free, this additional freedom may be
unnecessary. However, if some errors occur in the gates,
this freedom can be used to improve the result. Moreover,
problems that are similar, but not identical to the hydrogen
molecule, can then leverage this base ansatz and natural
extensions from it. This simple example is designed to
illustrate the ways that one can move from the circuit level
(ii) to a hybrid ansatz that combines tools from the circuit
and pulse levels (ii) and (i) and back again, while changing
the nature of the ansatz.

Finally, we see that beginning at any level in the hier-
archy in Fig. 2, it is possible to iterate on the connec-
tions between these approaches, choosing to carry forward
parametrizations or develop new ones, and map back to the
other corresponding formalism. For example, if one takes a
variational parametrization at the control-field level, maps
it to a quantum circuit with a Hamiltonian simulation map,
then selects a particular gate and maps it back to a control
parametrization, and uses the combined circuit, we get a
new hybrid parametrization that can be manipulated closer
to a device-level description. It is easy to see that these
choices can be mixed, matched, and iterated on to cre-
ate an entire family of parametrizations. Here, we envision
that the tools of QOC are bolstered by concepts from dig-
ital simulation, including error correction and advanced
time-propagation algorithms, and vice versa.

In addition to expanding the set of options and tools
of both areas, we hope that this formulation and perspec-
tive of connections allows more direct cross-pollination of
ideas. For example, by formulating a circuit ansatz based
on control theory, we more directly understand the conse-
quences of controllability in a circuit model. In turn, by
developing a control-theoretic ansatz from a circuit family
known to be universal, we may find new insights in relation
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to entanglement-generating power or expressiveness of
quantum circuits.

B. Optimization landscapes

A critical consideration in VQAs is the difficulty of opti-
mizing over the circuit parameters. The ease of finding the
global minimum of J during this optimization process is
dictated by the structure of the underlying optimization
landscape as well as available prior information about the
location of good optima. A central theme of QOC is the
study of such landscapes, and translating these tools into
the context of VQAs will allow for new strategies in ansatz
and problem design.

At their core, VQAs represent the mapping of a con-
vex optimization problem in an exponentially large lin-
ear space, to a nonconvex optimization problem over
parametrized quantum circuits. This can be seen by
expanding the variational state |ψ({θi})〉 in the eigenbasis
{|n〉} of Hp . The objective functional then takes the form
J [{θi}] = ∑d

n=1 λn({θi})En, where En are the eigenvalues
of Hp and λn = |〈n |ψ({θi})〉 |2. When J is optimized over
the set {λn}, the optimization problem is convex, which
implies that the corresponding optimization landscape is
free from local optima. In contrast, the parameters θi typ-
ically enter in a nonlinear fashion in λn, often via an
exponential map in Ui(θi). As such, when J is optimized
over the set {θi} the optimization problem is nonconvex
and in general, local optima can appear.

In the context of QOC, to address these and other
landscape considerations, a sizeable body of research has
analyzed the topological features and properties of the
(dynamic) QOC landscape, defined by J as a functional
of the control fields [114–119]. To characterize these land-
scapes, recall that J depends on the time-evolution oper-
ator up to time T, such that we have J = J {UT[f (t)]}.
Then, the functional derivative of J with respect to a sin-
gle field δJ/δf (t) is given by the composition δJ/δf (t) =
∂J/∂UT ◦ δUT/δf (t). The first term in the composition
captures the properties of the kinematic control landscape,
i.e., J defined as a function of UT. The composition above
implies that if the variation of UT with respect to the
control field δUT/δf (t) is assumed to be full rank, i.e.,
equal to d2, then the dynamic and kinematic critical points
coincide. This result is referred to as local surjectivity. In
this scenario, the topology of the dynamic control land-
scape is fully characterized by the critical point structure
of the kinematic control landscape. Results from QOC the-
ory have shown that the kinematic control landscapes of
typical objective functionals consist of global extrema and
saddles [116,117,120–122]. As such, if we are able to cre-
ate every unitary transformation such that J as a function
of UT can be varied arbitrarily, and if UT can be varied
arbitrarily also by varying the control field, then the land-
scape of J consists of saddles and global extrema. More

precisely, under the assumptions of (1) a full dynamical
Lie algebra, (2) unconstrained control fields of arbitrary
length and shape, and (3) local surjectivity, the control
landscapes for commonly employed objective function-
als are free from local extrema. Although debated in the
literature [118,119,123–129], extensive QOC simulation
and laboratory studies indicate the relative ease of satis-
fying all three assumptions [49]. Furthermore, it has been
shown that assumptions (1) and (3) are almost always sat-
isfied in a measure theoretic sense [74,127,130], thereby
implying that QOC landscapes are almost always free of
local minima under the premise of sufficient control-field
resources [127]. While the precise meaning of “sufficient”
is application dependent and remains an open challenge
to systematically assess, it has recently been shown that
local surjectivity is almost always met when the control
fields allow for approximating Haar random evolutions
[130,131] within the time interval of interest: [0, T]. As
such, even though performing the optimization over a set
of parametrized control fields does not avoid the noncon-
vexity of the problem, provided the assumptions (1)–(3)
hold, the interior of the optimization landscape provably
contains saddles only.

Looking ahead, we hope that the theory of QOC land-
scapes can provide insight into optimization landscapes of
VQAs, which could include better tools to understand dif-
ferent ansätze. Most directly, the optimization landscape
of a variational ansatz formulated at the control-field level
in Fig. 2 could be analyzed in terms of existing QOC
landscape theory. Here, in addition to the theoretical foun-
dations, numerical tools, such as D-MORPH (a flexible
continuation-method developed in the context of QOC)
[132,133] and FLACCO (software for feature-based land-
scape analysis of continuous and constrained optimization
problems) [134], could be employed to explore these land-
scapes. However, there are a number of caveats to consider
for this direct approach; that is, although QOC has many
well-developed tools for the characterization of QOC land-
scapes, there remain challenges for applying these tools
to scalable and practical implementations of VQAs. For
instance, characterizing the landscape topology in the
presence of constraints is challenging; although these land-
scapes are expected to be free from local extrema when
sufficiently many unconstrained variables {ci} are used to
parametrize the control fields, there is evidence that an
insufficient number of parameters (i.e., less than d2), lead-
ing to a violation of the surjectivity assumption (3), and
control-field constraints are among the reasons for local
extrema to appear [135]. In general, further research is
needed when the control resources do not scale with the
dimension d of the quantum system being controlled, but
rather only scale as O{poly[log(d)]}. To this end, it may
be interesting to study systems that are not fully control-
lable, but where all states within a certain subspace defined
by the symmetries of the (controlled) system are reachable.
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One may then ask whether a (significantly) smaller number
of control parameters could be used to obtain a trap-free
landscape when moving only in a restricted subspace (con-
taining the ground state) whose dimension does not scale
exponentially.

We also remark that as the dimension d of the quan-
tum system increases the landscape flattens out, such that
for certain objective functionals, gradients become expo-
nentially small as a function of the number of qubits,
making these regions difficult to leave with local optimiza-
tion algorithms. These so-called barren plateaus [25] are a
consequence of a concentration of measure phenomenon,
and occur in both VQA implementations and QOC [130].
Understanding how to avoid them in each context inde-
pendently could yield useful and transferable techniques
benefiting both areas of study, and will likely involve care-
ful design of ansatz, initialization, and training methods,
e.g., Ref. [136].

C. Noise and time-optimal control

Today, errors in NISQ devices severely restrict the cir-
cuit depths that are achievable for VQAs. For example,
certain errors can arise from stochastic fluctuations in the
gate implementations, leading to errors that accumulate as
circuit depth increases. In QOC, robust control strategies
have been developed to suppress random errors like this,
by seeking pulses that are robust in the presence of finite
control noise; the condition of the Hessian of J can be
used to determine such properties [133]. We believe more
direct translation of robust control tools from QOC into
variational algorithms will help improve their robustness
against general errors.

Other, often more insidious, errors stem from interac-
tions of the qubits with their surrounding environment
that can cause the system to decohere over time. Thus,
the timescale associated with performing a quantum cir-
cuit should ideally be restricted to the coherence time of
the system. When coherence times are limited and gates
are dominated by stochastic errors, it is desirable to seek
VQA circuits that drive the qubits to the minimum of J
as quickly as possible, i.e., using circuits with minimum
depth. In the context of QOC, the theory of time-optimal
control, and the associated theory of quantum speed lim-
its, provide a powerful framework for considering this
issue at the pulse level, and may offer valuable tools to
enhance VQA performance. In general, identifying time-
optimal fields is a challenging task, as it corresponds
to finding the associated geodesic on the unitary group
[125,137–141]. Exact results are only known for certain
systems consisting of 1–3 qubits [142–146]. However,
upper and lower bounds on T can be found [147–150].
In addition, for n-qubit networks, the upper bounds in
Ref. [149,150] allow for characterizing the unitary trans-
formations that can be created efficiently with 2n local

fields, i.e., where T = O[poly(n)]. While some progress
has recently been made to characterize efficiently control-
lable qubit graphs [151], in general, it remains an open
challenge to systematically determine the set of unitary
transformations that are reachable in polynomial time with
fewer controls. Finally, we remark that additional con-
trol resources not only offer faster control strategies and
in general, richer ansätze, but can also allow for coun-
teracting decoherence by enabling decoupling schemes
[152–155] that can suppress interactions with the environ-
ment.

D. Robust control through digitization

All the directions covered by the previous subsections
are fairly natural in the VQA setting. However, if we think
more broadly, the scope of interactions between VQAs and
QOC could be even more fruitful. In particular, consider
how VQAs could impact traditional QOC experiments.
Until this point, we have considered a setting natural to
VQAs, where one typically starts from a known initial
state, e.g., |00..0〉 and builds up the state of interest using
a set of parametrized gates or controls. However, many
QOC experiments deal with situations where one is given
an unknown quantum state |ψ〉, and wishes to manipulate
it. For example, this quantum state may be the state of reac-
tants in a chemical system and the control goal is to steer
the reaction products. Alternatively, in a quantum sensing
context, the quantum state may be the state of the sensed
environment and the control goal is to distinguish features
in the environment.

If we now consider such a QOC experiment from the
point of view of VQAs, and think of the applied controls
as a parametrized unitary transformation, one can translate
these controls into a parametrized circuit ansatz [113] and
further, into an error-corrected circuit. This would have
the effect of ensuring that the controls are applied to an
arbitrarily high degree of accuracy, an advantage of taking
the digital point of view. Of course, to be fully compati-
ble with quantum error correction, the input quantum state
may also need to be encoded, and effective digital encoding
of quantum states from nature is an experimental challenge
that has not yet been realized, but this perspective has the
potential to enable QOC experiments of arbitrary accuracy
on many-body systems.

The increasing difficulty of precisely controlling a quan-
tum system with nonideal analog controls as its dimension
increases can be understood in various ways. Conceptu-
ally, this is a consequence of the orthogonality catastro-
phe—where small perturbations from the ideal Hamilto-
nian (in this setting, caused by small errors in the analog
controls) can lead to an exponential decay (with system
dimension) of fidelity with the state under ideal evolution
[156,157]. More operationally, consider an N -body quan-
tum system with state vector of dimension d ∼ exp(N ).
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We can estimate the requirements on control precision with
a simple model. Assume we want to prepare the state with
1 in the first entry of the state vector, and 0 on the remain-
ing (d − 1) entries. Now for each dimension we are able to
achieve a precision δ, and consider for simplicity the nor-
malized erred state that is off by δ in each of the entries
except the first. In this case, the fidelity with the target
state is given by 1/[1 + (d − 1)δ2], which means to main-
tain a constant fidelity, one must have δ ∝ d−1/2. This is an
exponential (in N ) precision requirement for the control.

In contrast, if the state of this N -body system can be
transduced into n = log2(d) qubits, the control of the state
can be encoded in a VQA circuit [113]. Then, assuming
the fidelity of qubit gates are sufficiently high and using
the tools of quantum error correction, the fidelity of con-
trolling this state can be brought arbitrarily close to 1 with
logarithmic overhead in physical resources.

At a broader application level, the manipulation of
unknown quantum states in a VQA manner encompasses
what is sometimes called “quantum machine learning”
for training data provided in the form of quantum states
rather than classical inputs, or quantum data. This idea
allows for the QOC tools to come to bear in this com-
munity. Moreover, this permits a closer connection to
query-based proofs in quantum computer science, where
stronger proofs are possible in the setting where only a
limited number of quantum states are available [158–162].

VI. OUTLOOK

In this Perspective, we have explored the connections
between VQAs and the theory of QOC. While VQA appli-
cations constitute some of the most promising applications
of near-term quantum computers, more progress bridging
the gap between theoretical VQAs and NISQ computing
hardware is necessary to realize this promise. We have
argued that concepts from QOC, and the more general
framework outlined in Sec. V, which integrates traditional
models of QOC with VQAs and extends both, are critical
to bridging this gap. Both fields have something to gain
from exploring this fertile area of overlap. From the per-
spective of VQAs, the mature theory and powerful tools
of QOC can provide richer variational structures and offer
a deeper understanding of variational experiments. Con-
versely, from the perspective of QOC, VQAs present an
exciting frontier of many-body quantum control, pushing
this established field in new directions. For these reasons,
we expect bountiful fruits at the intersection of these two
areas of research in the years to come.
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