Synopsis

Exciting Vibrations

Physics 9, s39
The state of excited electrons in a diamond-crystal defect can be controlled using mechanical waves.
D. A. Golter et al., Phys. Rev. Lett. (2016)

Shine a laser on a nitrogen-vacancy (NV) center—an atomic defect in a piece of diamond consisting of a vacancy (V) next to a nitrogen (N) impurity—and its unpaired electrons jump into an excited state. Andrew Golter and Thein Oo from the University of Oregon, Eugene, and colleagues have shown that these electrons can also be excited using mechanical waves. In this case, the energy of the jump experienced by the electrons can be controlled by tuning the frequency of the mechanical waves as well as that of the incident laser. The authors suggest that mechanical vibrations could be an effective way to control the quantum energy state of electrons in chip-based networks of qubits.

The researchers took a diamond crystal containing a single NV center and built a tiny electrical speaker on the crystal’s surface. By oscillating the speaker, they induced mechanical vibrations in the diamond that traveled along its surface, much like waves on the ocean. As the waves passed over the diamond, they slightly deformed the crystal lattice, changing the spacing and arrangement of atoms around the NV center. When the frequency of the vibrational waves was correctly tuned, the electrons in the NV center absorbed energy from the mechanical waves, as well as from an applied laser, and switched to a different quantum energy state. The authors were able to observe the change in quantum state via photons emitted when the NV center returned to its ground state.

This research is published in Physical Review Letters.

–Katherine Wright


Subject Areas

Quantum PhysicsMechanics

Related Articles

Fluxonium Qubits Under Control
Quantum Physics

Fluxonium Qubits Under Control

By coupling two fluxonium qubits through an inductive circuit rather than through a capacitor, researchers have realized a high-fidelity two-qubit gate. Read More »

Quantum Gravity Gets a New Test
Gravitation

Quantum Gravity Gets a New Test

A proposed experiment could bring scientists closer to answering the long-standing question of whether gravity is a classical or a quantum phenomenon. Read More »

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

More Articles