Synopsis

Waste Disposal in Aquatic Embryos

Physics 8, s9
Protrusions on the surfaces of developing aquatic embryos may ensure that waste and toxins are effectively transported away from the organism.

Living organisms need to efficiently dispose of waste products and toxins in a way that limits the possibility that they are reabsorbed. For aquatic organisms in the early stages of development, this is not a trivial task. Nicholas Licata and Aaron Clark from the University of Michigan-Dearborn analyzed the case of sea urchins, suggesting that the cell protrusions (microvilli) that form on the outer surface of the developing embryo may be the answer. They show that toxins emitted from the ends of the microvilli are efficiently transported away, making it less likely that the embryo will encounter toxins that it previously expelled.

Licata and Clark use a hydrodynamic model to describe the characteristic fluid environment around an urchin embryo—a highly turbulent, wave-swept, rocky seashore. However, since the embryos are much smaller than the typical turbulent eddy currents, the dynamics of the system can be simplified and described in terms of laminar flow. The authors found that under such conditions the near-surface region of the embryo experiences strong advection, which sweeps waste away and leads to the formation of an almost toxin-free layer, with a thickness comparable to the microvilli height. Since most waste toxins are released from the ends of the microvilli (where the transmembrane proteins responsible for expelling toxins are localized), the toxins are swept away before they can diffuse back to the embryo surface and be reabsorbed. The model considered by the authors is not specific to sea urchins, and it could be applied to a wide variety of biological organisms and transport problems in fluid environments.

This research is published in Physical Review E.

–Katherine Wright


Subject Areas

Fluid DynamicsBiological Physics

Related Articles

How Water Flows inside a Sea Sponge
Computational Physics

How Water Flows inside a Sea Sponge

A deep-sea sponge’s intricate skeleton converts the horizontal flow of ocean currents into a vertical flow through the sponge’s body—a mechanism that helps with the sponge’s filter feeding. Read More »

Avoiding Instabilities in Hydrogen-Spiked Flames
Fluid Dynamics

Avoiding Instabilities in Hydrogen-Spiked Flames

Experiments show the effects on combustion of adding hydrogen to natural gas—a fuel mixture that could reduce carbon emissions from power plants. Read More »

Two-Dimensional Simulation Captures the Ocean’s Energy Cycle
Fluid Dynamics

Two-Dimensional Simulation Captures the Ocean’s Energy Cycle

A new model provides an improved description of the flow of the ocean’s kinetic energy by including friction with the coasts. Read More »

More Articles