Synopsis

Targeting Single Qubits

Physics 8, s31
A scheme based on a combination of lasers and microwaves can fully control a single atomic qubit sitting within a large multiqubit array.
T. Xia et al., Phys. Rev. Lett. (2015)

Quantum computation is still in its early stages. But as more and more qubits are assembled together in a quantum processor, the challenge becomes that of controlling each individual qubit, while not disturbing the nearby ones. In a new experiment with a two-dimensional array of 49 atomic qubits, researchers have demonstrated full control over single qubits using a combination of two electromagnetic fields—one in the microwave and the other in the visible range.

Atomic systems are considered for future quantum computers because they offer long-term stability. Certain atoms have electronic energy states that can act as the 0 and 1 of a qubit. Light fields can perform basic logic operations, such as turning a 0 into a 1. The problem is that this light often requires a long wavelength, making it hard to focus on just one qubit.

For their qubit system, Mark Saffman and his colleagues from the University of Wisconsin, Madison, loaded cesium atoms into a two-dimensional optical lattice with 3.8-micrometer site-to-site spacing. The cesium atoms have qubit states that respond to 9.2-gigahertz microwaves (whose wavelength is much larger than the qubit spacing). To select a single qubit, the team detuned their microwave emitter away from 9.2 gigahertz and then focused a laser beam (wavelength 459 nanometers) on a single site of their choosing. The laser light induces a Stark shift that alters the atomic energy levels, so that only the chosen qubit responds to the detuned microwaves. This scheme, based on a previously developed targeting technique, offers, for the first time, full control over all the possible logic operations on a single qubit in a two-dimensional array.

This research is published in Physical Review Letters.

–Michael Schirber


Subject Areas

Quantum InformationQuantum Physics

Related Articles

Spinning Up Rydberg Atoms Extends Their Life
Quantum Information

Spinning Up Rydberg Atoms Extends Their Life

Researchers record the longest Rydberg-atom lifetime by placing strontium atoms in “circular” states, where the outer electrons move in planet-like orbits. Read More »

Fluxonium Qubits Under Control
Quantum Physics

Fluxonium Qubits Under Control

By coupling two fluxonium qubits through an inductive circuit rather than through a capacitor, researchers have realized a high-fidelity two-qubit gate. Read More »

Quantum Gravity Gets a New Test
Gravitation

Quantum Gravity Gets a New Test

A proposed experiment could bring scientists closer to answering the long-standing question of whether gravity is a classical or a quantum phenomenon. Read More »

More Articles