Synopsis

Optical Computing Under the Lens

Physics 8, s118
A theoretical analysis quantifies the technical resources required to build a quantum computer based on photons.

Photons and linear optical components, such as mirrors and beam splitters, have been touted as a practical means to make a quantum computer. But what does it really take to build, block by block, such a linear optical quantum computer? Ying Li from the University of Oxford, UK, and colleagues now describe a theoretical analysis that puts numbers on the technical resources required to build such a machine.

Their work goes beyond previous analyses because it does two things simultaneously. One, it determines the overall number of components needed to build a useful linear optical quantum computing (LOQC) machine. And two, it establishes the maximum photon-loss and error rates that each component should have to enable fault-free computation. It also provides a comparison with computing schemes that use matter such as atoms and superconducting circuits, as opposed to photons, to encode quantum information.

The authors estimate that, for a photon-loss rate per component of one in a thousand and an error rate per component of one in a hundred thousand, the total number of components required is at least 5 orders of magnitude larger than for a matter-based processor. This is because photons interact with each other much more weakly than matter particles do. LOQC schemes overcome this limitation only at the cost of massively more complex circuits. While these results may be regarded as bad news for LOQC, they could guide researchers in the search for improved protocols for LOQC. In the end, hybrid architectures that combine photons and matter may turn out to be better than pure optical approaches.

This research is published in Physical Review X.

–Ana Lopes


Subject Areas

Quantum InformationQuantum Physics

Related Articles

Spinning Up Rydberg Atoms Extends Their Life
Quantum Information

Spinning Up Rydberg Atoms Extends Their Life

Researchers record the longest Rydberg-atom lifetime by placing strontium atoms in “circular” states, where the outer electrons move in planet-like orbits. Read More »

Fluxonium Qubits Under Control
Quantum Physics

Fluxonium Qubits Under Control

By coupling two fluxonium qubits through an inductive circuit rather than through a capacitor, researchers have realized a high-fidelity two-qubit gate. Read More »

Quantum Gravity Gets a New Test
Gravitation

Quantum Gravity Gets a New Test

A proposed experiment could bring scientists closer to answering the long-standing question of whether gravity is a classical or a quantum phenomenon. Read More »

More Articles