Synopsis

Particle Physics Theory Inspires Optics

Physics 6, s82
Design ideas for making new optical devices borrow from supersymmetry, a candidate theory in particle physics.
M.-A. Miri et al., Phys. Rev. Lett. (2013)

Supersymmetry is an idea designed to overcome certain problems in the standard model of particle physics. The theory states that every particle (like an electron) has a superpartner with a quantum mechanical spin that differs by 1/2. Though none of these particles have been detected at particle accelerators, supersymmetry itself—or, more precisely, the math behind it—may be making inroads into the field of optics. In Physical Review Letters, Mohammad-Ali Miri at the University of Central Florida, Orlando, and colleagues propose that optical supersymmetric partners could be used to manipulate light in optical devices.

Miri et al. considered a wave propagating through a waveguide with a given refractive index landscape. Applying the same mathematical transformation that relates a particle to its superpartner, they found the waveguide’s superpartner and its corresponding refractive index landscape. The authors showed that the waveguide and its superpartner were phase matched, meaning every mode had a counterpart with the exact same propagation constant in the partner structure. Therefore, light could efficiently pass from one waveguide to the other. The only exception was the fundamental mode, which didn’t leak into the “superpartner.”

Such devices could, Miri et al. argue, be exploited to selectively filter specific modes of light from a wave packet. Normally, when an arbitrary input excites a multimode waveguide, it produces a random optical field. However, if the waveguide’s superpartner is brought into close proximity, all modes, apart from the fundamental, will couple between the two structures. And if the superpartner is lossy, the higher modes will eventually disappear, leaving only the fundamental mode behind. – Katherine Thomas


Subject Areas

OpticsMetamaterialsQuantum Physics

Related Articles

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

Quantum Machine Learning Goes Photonic
Quantum Physics

Quantum Machine Learning Goes Photonic

Measuring a photon’s angular momentum after it passes through optical devices teaches an algorithm to reconstruct the properties of the photon’s initial quantum state. Read More »

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

More Articles