Synopsis

Nuclear Reactions in Lab Plasma

Physics 6, s113
Using powerful laser pulses, researchers are able to study nuclear reactions in a plasma without the screening effect of bound electrons.
Courtesy M. Barbui/Texas A&M University

Many low-energy nuclear reactions in astrophysics occur in plasmas, in which the nuclei are free of electrons. By contrast, most nuclear experiments involve neutral targets, whose bound electrons produce a “screening effect.” A new technique uses lasers to remove these unwanted electrons so that low-energy nuclear reactions can be studied directly in laboratory plasma. The authors demonstrate their approach in Physical Review Letters on the deuterium/helium-3 interaction that helped synthesize elements in the early Universe and could potentially be used to power a future nuclear fusion reactor.

In a typical nuclear reaction experiment, an ion beam is directed at a target containing neutral atoms. The bound electrons provide a screen that reduces the Coulomb repulsion between the positive nuclei. Therefore, laboratory measurements tend to predict higher reaction rates than would be expected between ionized nuclei. To obtain astrophysically relevant parameters, researchers try to correct their data by estimating the screening effect of the bound electrons.

Marina Barbui from Texas A&M University, College Station, and her colleagues have instead found a way to directly observe a reaction inside a plasma. In particular, they studied the interaction between deuterium and helium-3 that leads to helium-4 and a proton. The researchers used a high-powered petawatt laser to explode apart deuterium molecular clusters, producing low-energy deuterium ions. Some of the deuterium ions collided with slow-moving helium-3 nuclei, which were also nearly completely ionized by the laser pulse. The team measured the effective rate of helium-4 production inside their plasma and found it consistent with other measurements. The group plans to use their method to study other low-energy reactions, such as those involved in the CNO cycle of stars. – Michael Schirber


Subject Areas

AstrophysicsNuclear Physics

Related Articles

Shedding Light on the Thorium-229 Nuclear Clock Isomer
Nuclear Physics

Shedding Light on the Thorium-229 Nuclear Clock Isomer

Researchers use a laser to excite and precisely measure a long-sought exotic nuclear state, paving the way for precise timekeeping and ultrasensitive quantum sensing. Read More »

The Universe’s Topology May Not Be Simple
Astrophysics

The Universe’s Topology May Not Be Simple

Most models for the overall shape and geometry of the Universe—including some exotic ones—are compatible with the latest cosmic observations. Read More »

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

More Articles