Synopsis

Tuning Casimir Forces

Physics 5, s185
Quantum Hall effects can be exploited to tune, reverse, and even eliminate the Casimir force between two graphene sheets.

When two uncharged metallic mirrors are placed sufficiently close in a vacuum, fluctuations in the quantum vacuum field create an attractive force between them, known as the Casimir force. But if the mirrors are made of graphene, instead of a metal, something different can happen in the presence of a magnetic field. Writing in Physical Review Letters, Wang-Kong Tse and Allan MacDonald at the University of Texas at Austin investigate a possible method for controlling and even eliminating the Casimir force in this manner.

The scheme exploits the emergence of discrete Landau energy levels in graphene, arising from the quantum Hall effect induced by a strong magnetic field. The Casimir effect thus becomes dependent on the Hall conductivity, which in turn leads to the quantization of the Casimir force and allows tuning it electrically between repulsive and attractive values. The authors’ calculations show that the Casimir force can be strongly suppressed when one of the mirrors is charge neutral. The predicted effect should also hold for a sphere-and-plate mirror combination, an important geometry for studying Casimir effects due to the difficulty of keeping two planes perfectly parallel to each other.

A key motivation for suppressing the Casimir force is provided by the efforts to examine gravitational attraction at short distances (a few micrometers), over which theories have predicted non-Newtonian behavior. At these distances, the Casimir force exceeds gravitational attraction by far. The authors’ scheme would solve this problem and allow more sensitive and direct measurements of gravitational attraction. – Daniel Ucko


Subject Areas

GrapheneQuantum Physics

Related Articles

Fluxonium Qubits Under Control
Quantum Physics

Fluxonium Qubits Under Control

By coupling two fluxonium qubits through an inductive circuit rather than through a capacitor, researchers have realized a high-fidelity two-qubit gate. Read More »

Quantum Gravity Gets a New Test
Gravitation

Quantum Gravity Gets a New Test

A proposed experiment could bring scientists closer to answering the long-standing question of whether gravity is a classical or a quantum phenomenon. Read More »

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

More Articles