Synopsis

Every single layer matters

Physics 2, s37
A critical thickness below which thin films of the metallic ferromagnet SrRuO3 become insulating and lose their ferromagnetic properties has been determined.

SrRuO3 belongs to a class of complex perovskite oxides that display an interesting interplay of spin, charge, and orbital degrees of freedom, and may provide alternatives to conventional silicon-based electronics. While bulk SrRuO3 is a metallic ferromagnet at low temperatures, thin films of SrRuO3 undergo a metal-to-insulator transition and exhibit intriguing changes in the magnetic order as a function of thickness. A detailed understanding of how the thickness of the films affects the underlying physics is, however, absent.

In a Rapid Communication published in Physical Review B, Wolter Siemons and Gertjan Koster of the University of Twente in the Netherlands, and Jing Xia, Malcolm Beasley, and Aharon Kapitulnik of Stanford University study the transport and magnetic properties of thin films of SrRuO3 grown on a SrTiO3 substrate. They pin the critical thickness for the metal-insulator transition to four layers, observing eight orders of magnitude increase in resistance when the thickness decreases from four to three layers. In addition, they find that for two and three layers, the axis of the magnetic moment associated with ferromagnetism collapses to the plane of the films, compared to the bulk case where the alignment is close to perpendicular. The authors propose that reconstruction of the crystal lattice at the interface with the SrTiO3 substrate creates an antiferromagnetic layer and induces the insulating state in the two and three layer case. The implication is that a thickness of four layers is adequate to overcome the interface influence, resulting in a phase transition to the bulk properties of SrRuO3.– Alex Klironomos


Subject Areas

Nanophysics

Related Articles

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

Levitated Nanoresonator Breaks Quality-Factor Record
Nanophysics

Levitated Nanoresonator Breaks Quality-Factor Record

A nanoresonator trapped in ultrahigh vacuum features an exceptionally high quality factor, showing promise for applications in force sensors and macroscopic tests of quantum mechanics.  Read More »

Long-Range Resonances Slow Light in a Photonic Material
Nanophysics

Long-Range Resonances Slow Light in a Photonic Material

Light–matter interactions in certain one-dimensional photonic materials can bring light nearly to a standstill, an effect that researchers show requires consideration of long-range interactions between the material’s components. Read More »

More Articles