Synopsis

Equality for quantum graphs

Physics 2, s1
Quantum graphs are convenient mathematical tools for describing complex molecules and networks of quantum wires. Scientists are addressing the question: When and how fast can a wave function spread out over the entire graph?
Illustration: Courtesy of Fabien Piotet

A quantum graph consists of a set of vertices and edges that can model a variety of systems such as electronic bonds in a complex molecule, a network of quantum wires, and photonic crystals. A wave function distributed over such a graph can be localized, in which case it is concentrated within a certain region; or, at the opposite extreme, it can spread itself equally over all possible regions.

Writing in Physical Review Letters, Sven Gnutzmann of the University of Nottingham and Jon Keating and Fabien Piotet of the University of Bristol use methods from field theory to provide a measure of how close a large quantum graph is to having a wave function uniformly spread over all its vertices and how quickly this happens.

In their model, the probability for a particle to move along the edges is determined by a quantum mechanical scattering matrix at each vertex and is analogous to a classical graph in which a memoryless (Markov) process describes the transition probabilities. So, what is the criterion for determining whether the wave function is distributed equally over the entire quantum graph? The answer depends on how the eigenvalue spectrum for the corresponding classical graph changes as the graph size is increased. Such semiclassical approximations and analogies provide a bridge between the quantum and classical worlds. – Sonja Grondalski


Subject Areas

Quantum Physics

Related Articles

Fluxonium Qubits Under Control
Quantum Physics

Fluxonium Qubits Under Control

By coupling two fluxonium qubits through an inductive circuit rather than through a capacitor, researchers have realized a high-fidelity two-qubit gate. Read More »

Quantum Gravity Gets a New Test
Gravitation

Quantum Gravity Gets a New Test

A proposed experiment could bring scientists closer to answering the long-standing question of whether gravity is a classical or a quantum phenomenon. Read More »

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

More Articles