Synopsis

Cold Collisions Get Charged

Physics 15, s32
Researchers demonstrate that they can create molecules from lithium dimers and ytterbium ions, paving the way for quantum chemistry studies in a new type of system.
H. Hirzler/University of Amsterdam

To understand the influence of quantum effects on a chemical reaction, scientists typically perform the reaction at ultracold temperatures, where they can more easily model the quantum collisions that produce molecules. Those collisions have been studied experimentally at ultralow temperatures for two atoms but not for the more complex scenario of an ion and a molecule. Now, Henrik Hirzler at the University of Amsterdam and his colleagues have changed that, observing ultracold reactions between ytterbium ions and lithium dimers [1]. The demonstration expands the kinds of reactions for which scientists can probe the quantum effects.

To make their molecules, the team took the following steps: First, they trapped a single ytterbium ion ( Yb+). Second, they prepared a cloud of ultracold lithium atoms and dimers. Third, they spatially overlapped the cloud and the ion. After letting the ion and atom cloud interact for 500 ms, they checked the Yb+ion, bathing it in resonant-frequency laser light to see if it fluoresced.

The team found that when there were more lithium dimers present in the cloud, Yb+ was more likely to have stopped fluorescing after that time period, something that indicates a shift in the spacing between the ion’s energy levels. The team showed, using mass spectrometry, that this shift was due to the Yb+interacting with a lithium dimer to form YbLi+ and a Li atom.

Now that Hirzler and his colleagues have demonstrated that they can make molecular ions, they say that they hope to study in more detail the quantum effects involved in these reactions. They think that these ultracold molecules could also be used in quantum sensors and in searches for new physics.

–Katie McCormick

Katie McCormick is a freelance science writer based in Sacramento, California.

References

  1. H. Hirzler et al., “Observation of chemical reactions between a trapped ion and ultracold Feshbach dimers,” Phys. Rev. Lett. 128, 103401 (2022).

Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles