Synopsis

Structured Plasma Boosts X-Ray Flux

Physics 13, s34
The output of a compact x-ray source based on laser-generated plasma can be boosted by tailoring the spatial structure of the plasma.
M. Kozlova et al., Phys. Rev. X (2020)

High-intensity sources of femtosecond x-ray pulses are a must-have tool for studying ultrafast processes. Unfortunately, only a handful of kilometer-long free-electron lasers can produce these pulses, making them inaccessible to most researchers. Now, Michaela Kozlova at the Czech Academy of Sciences, Prague, and colleagues demonstrate improvements to an alternative, tabletop x-ray emitter—a laser-based scheme known as a wakefield accelerator—that could make such capabilities more broadly available.

In a wakefield accelerator, a femtosecond laser pulse travels through a plasma, pushing electrons away from its path and forming intense plasma waves in its wake. Electrons “surfing” on these waves are accelerated to relativistic speeds. They also wiggle around the laser-beam axis, emitting x rays whose frequency and intensity depend on the electrons’ speed and on the frequency and amplitude of their oscillations.

Previously, high-energy x-ray sources employing this technique required impractical lasers that output hundreds of terawatts. Kozlova and colleagues achieved similar results with a much smaller terawatt-class laser by tailoring the density of the laser-generated plasma. First, a gradual density increase in the direction of laser propagation increased the electrons’ speed and oscillation frequency. Second, a sharp density variation along a direction angled diagonally with respect to the beam axis increased the electrons’ oscillation amplitude. The two effects boosted the total x-ray flux tenfold compared to a homogeneous plasma, with a 100-fold improvement at hard x-ray wavelengths. The modified device produced x-ray pulses with a broad spectrum of frequencies that are suitable for performing ultrafast x-ray absorption spectroscopy experiments. These experiments enable the observation of changes in atomic and electronic structures occurring on femtosecond timescales.

This research is published in Physical Review X.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Subject Areas

Plasma Physics

Related Articles

Nuclear-Fusion Reaction Beats Breakeven
Plasma Physics

Nuclear-Fusion Reaction Beats Breakeven

Scientists have now vetted details of the 2022 laser-powered fusion reaction that produced more energy than it consumed. Read More »

Creating Fast Bunches of Electrons with Lasers
Optics

Creating Fast Bunches of Electrons with Lasers

The judicious shaping of a tube of plasma by one laser enhances the properties of electron bunches accelerated by another. Read More »

Nuclear Fusion Heats Up
Energy Research

Nuclear Fusion Heats Up

The observation of self-heating in magnetically confined plasmas represents a milestone on the road to fusion reactors based on such plasmas. Read More »

More Articles