Synopsis

A Lens for Millimeter-Sized Electron Accelerators

Physics 12, s29
An array of silicon pillars could focus and confine an electron beam in future computer-chip-sized electron accelerators, allowing faster acceleration of electrons using this technology.
D. Black, K. Leedle, N. Sapra/Stanford University

The SLAC National Accelerator Laboratory in California houses one of the world’s shortest particle accelerators. At just a few millimeters long, so-called “on-chip” accelerators could significantly reduce the costs and infrastructure needs of future particle colliders. However, current chip accelerators require conventional particle accelerators to first rev up electrons to nearly the speed of light—the chip then gives the final speed boost. Now Dylan Black at Stanford University, Calfornia, and colleagues have taken a step toward stand-alone chip accelerators, demonstrating a micrometer-sized lens that could be incorporated into such a device. Such a lens will be essential for future chip accelerators if they are to keep slow electrons confined as the particles are pushed to high speeds.

The lens developed by Black and colleagues consists of two rows of 15 silicon pillars. The electron beam travels between the two rows down a 375-nm-wide channel. To activate the lens, the team hits the pillars with a femtosecond-pulsed laser. The laser pulses generate a large, oscillating electromagnetic field between the pillar rows, which pushes the electrons toward the channel’s center, focusing and confining the particles in a narrow beam.

The team achieved a focusing power equivalent to that of plasma-based lenses—an alternative but undesirable lens option that is much less stable. They also tuned the lens’ power by adjusting the strength of the laser pulses. The team has yet to incorporate the lens into a chip accelerator. But they say that step should be relatively easy—similar pillar structures already exist in these devices, where the electric field they generate is used to accelerate the electrons.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor of Physics.


Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles