Synopsis

Polarization in hot water

Physics 1, s8
Molecular dynamics simulations show that thermal gradients – of order 1010 K over a meter - can polarize liquid water. The finding could have interesting implications for developing hyperthermal treatments that target cancer cells.

The Seebeck effect results from charge carrier diffusion along the thermal gradient. For water, however, Bresme, Lervik, Bedeaux, and Kjelstrip find that thermal reorientation of water molecules can lead to polarization of the bulk liquid, resulting in a sizeable electrostatic field. To examine this effect, the researchers carried out nonequilibrium molecular dynamics simulations with up to 3240 water molecules confined to a rectangular box having heat sources on the edges. As a reality check, the authors obtained good agreement between their simulated equation of state (which relates values such as temperature, pressure, volume and internal energy) and experimental data.

To obtain the electrostatic field gradient, Bresme et al. calculated the spatial charge distribution. For thermal gradients in the neighborhood of 1010 K/m they observe fields of about 108 V/m, but where do such extreme conditions exist? In fact, the authors note, these field gradients are characteristic of biomembranes and ionic thin films as well as of the conditions found in nanoparticle systems that experience heating from absorption of electromagnetic radiation. A better understanding of such effects may be relevant in proposals to destroy cancer cells with nanoparticles and radiation sources. - David Voss


Subject Areas

Biological Physics

Related Articles

Uncovering Networks in Rainforest Plants
Biological Physics

Uncovering Networks in Rainforest Plants

The spatial arrangement of plants in a rainforest corresponds to a special “critical” state that could be vital for ecosystem robustness.   Read More »

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

The Neuron vs the Synapse: Which One Is in the Driving Seat?
Complex Systems

The Neuron vs the Synapse: Which One Is in the Driving Seat?

A new theoretical framework for plastic neural networks predicts dynamical regimes where synapses rather than neurons primarily drive the network’s behavior, leading to an alternative candidate mechanism for working memory in the brain. Read More »

More Articles