Synopsis

New limits on dark matter

Physics 1, s61
Mounting evidence seems to rule out weakly interacting massive particles (WIMPs ) as the source of a so-far unexplained signal in the DAMA/LIBRA experiments.
Courtesy of J. I. Collar.

Over the past decade, the DAMA and DAMA/LIBRA experiments have published evidence that their particle detectors, which are buried deep beneath the Gran Sasso mountain in Italy, record an annual modulation in signal. The possibility that the modulation comes from unknown particles that make up the dark matter of the universe has made the result exciting—and controversial. In particular, scientists speculated that the effect could be consistent with the orbiting earth passing through a halo of weakly interacting massive particles (WIMPs). Although other dark matter searches mostly ruled out this possibility, they used detectors that would not have been sensitive to very light WIMPs (that is, with masses less than 10GeV/c2) or certain types of interactions between the WIMPs and the nuclei in the detectors.

The COUPP Collaboration ruled out this possibility for the case where these interactions with the nuclei in the detector were spin-dependent. Now, the CoGeNT Collaboration reports in Physical Review Letters on limits for the case of spin-independent WIMP-nucleus interactions, effectively ruling out this case also.

In combination with the earlier results, these findings suggest that the annual modulation effect reported by DAMA cannot be explained by a halo of standard WIMPs. At this point, the source of this effect and its possible connection with dark matter remains unresolved. — Stanley Brown


Subject Areas

Particles and FieldsCosmology

Related Articles

The Universe’s Topology May Not Be Simple
Astrophysics

The Universe’s Topology May Not Be Simple

Most models for the overall shape and geometry of the Universe—including some exotic ones—are compatible with the latest cosmic observations. Read More »

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

More Articles