Synopsis

Boosting interactions in BECs

Physics 1, s33
Tuning the interactions between ultracold atoms leads to a strongly interacting superfluid with properties more akin to liquid helium than a dilute Bose-Einstein condensate.

In the mid-1990s, researchers cooled atomic vapors to temperatures low enough to form a dilute Bose-Einstein condensate (BEC) where the atoms would all lock together in a single ground state. Another famous superfluid discovered earlier—low-temperature liquid helium—is a Bose condensate with much stronger interactions. Now researchers at JILA and the University of British Columbia have been able to tune the atom-atom scattering length in a rubidium BEC to a strongly interacting regime reminiscent of liquid helium.

To adjust the interactions between rubidium-85 atoms, the team used a mechanism called a Feshbach resonance in which colliding atoms strongly interact if their kinetic energy is equal to the energy of a bound state involving both atoms. This resonance can be tuned with an applied magnetic field, resulting in an adjustable scattering length. To measure the spectrum of excitations in the BEC, the researchers use Bragg spectroscopy: two counter-propagating lasers form an interference pattern that acts essentially as a moving diffraction grating. Rubidium atoms are scattered off the grating with momentum transfer determined by the period of the grating. Images of the BEC yield the momentum transfer as a function of excitation energy and the results showed substantial deviations from the case of a dilute weakly interacting BEC.

The strongly interacting BEC is interesting from a theoretical standpoint, and the Bragg interference technique provides a useful means of monitoring how transferring energy and momentum into such a system determines its excitations. – David Voss


Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles