• Letter
  • Open Access

Speed limits on deterministic chaos and dissipation

Swetamber Das and Jason R. Green
Phys. Rev. Research 5, L012016 – Published 10 February 2023
PDFHTMLExport Citation

Abstract

Uncertainty in the initial conditions of dynamical systems can cause exponentially fast divergence of trajectories, a signature of deterministic chaos, or be suppressed by the dissipation of energy. Here, we derive a classical uncertainty relation that sets a speed limit on the rates of local observables underlying these behaviors. For systems with a time-invariant stability matrix, the speed limit we derive simplifies to a classical analog of the Mandelstam-Tamm versions of the time-energy uncertainty relation. These classical bounds are set by fluctuations in the local stability of state space. To measure these fluctuations, we introduce a definition of the Fisher information in terms of Lyapunov vectors in tangent space, analogous to the quantum Fisher information defined in terms of wave vectors in Hilbert space. This information sets an upper bound on the speed at which classical dynamical systems and their observables, instantaneous Lyapunov exponents and dissipation, evolve. This speed limit applies to systems that are open or closed, conservative or dissipative, actively driven or passively evolving, and directly connects the geometries of phase space and information.

  • Figure
  • Figure
  • Received 18 October 2021
  • Revised 3 May 2022
  • Accepted 23 December 2022

DOI:https://doi.org/10.1103/PhysRevResearch.5.L012016

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nonlinear DynamicsStatistical Physics & Thermodynamics

Authors & Affiliations

Swetamber Das and Jason R. Green*

  • Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA and Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA

  • *jason.green@umb.edu

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 1 — February - April 2023

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×