• Open Access

Improved quantum error correction with randomized compiling

Aditya Jain, Pavithran Iyer, Stephen D. Bartlett, and Joseph Emerson
Phys. Rev. Research 5, 033049 – Published 25 July 2023

Abstract

Current hardware for quantum computing suffers from high levels of noise, and so to achieve practical fault-tolerant quantum computing will require powerful and efficient methods to correct for errors in quantum circuits. Here, we explore the role and effectiveness of using noise tailoring techniques to improve the performance of error correcting codes. Noise tailoring methods such as randomized compiling (RC) convert complex coherent noise processes to effective stochastic noise. While it is known that this can be leveraged to design efficient diagnostic tools, we explore its impact on the performance of error correcting codes. Of particular interest is the important class of coherent errors, arising from control errors, where RC has the maximum effect—converting these into purely stochastic errors. For these errors, we show here that RC delivers an improvement in performance of the concatenated Steane code by several orders of magnitude. We also show that below a threshold rotation angle, the gains in logical fidelity can be arbitrarily magnified by increasing the size of the codes. These results suggest that using randomized compiling can lead to a significant reduction in the resource overhead required to achieve fault tolerance.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 13 March 2023
  • Accepted 20 June 2023

DOI:https://doi.org/10.1103/PhysRevResearch.5.033049

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Aditya Jain1,2,3, Pavithran Iyer1,2, Stephen D. Bartlett4, and Joseph Emerson1,2,3

  • 1Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
  • 2Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
  • 3Keysight Technologies Canada Inc., Mississauga, Ontario L5N 2M2, Canada
  • 4Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 3 — July - September 2023

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×