• Open Access

Topological classification of non-Hermitian Hamiltonians with frequency dependence

Maximilian Kotz and Carsten Timm
Phys. Rev. Research 5, 033043 – Published 24 July 2023

Abstract

We develop a topological classification of non-Hermitian effective Hamiltonians that depend on momentum and frequency. Such effective Hamiltonians are in one-to-one correspondence to single-particle Green's functions of systems that satisfy translational invariance in space and time but may be interacting or open. We employ K theory, which for the special case of noninteracting systems leads to the well-known 10-fold-way topological classification of insulators and fully gapped superconductors. Relevant theorems for K groups are reformulated and proven in the more transparent language of Hamiltonians instead of vector bundles. We obtain 54 symmetry classes for frequency-dependent non-Hermitian Hamiltonians satisfying antiunitary symmetries. Employing dimensional reduction, the group structure for all these classes is calculated. This classification leads to a group structure with one component from the momentum dependence, which corresponds to the non-Hermitian generalization of topological insulators and superconductors, and two additional parts resulting from the frequency dependence. These parts describe winding of the effective Hamiltonian in the frequency direction and in combined momentum-frequency space.

  • Figure
  • Figure
  • Figure
  • Received 14 April 2023
  • Accepted 1 July 2023

DOI:https://doi.org/10.1103/PhysRevResearch.5.033043

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Maximilian Kotz1,* and Carsten Timm1,2,†

  • 1Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany
  • 2Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany

  • *maximilian.kotz@tu-dresden.de
  • carsten.timm@tu-dresden.de

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 3 — July - September 2023

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×