• Open Access

Berry curvature associated to Fermi arcs in continuum and lattice Weyl systems

Dennis Wawrzik and Jeroen van den Brink
Phys. Rev. Research 5, 033007 – Published 5 July 2023

Abstract

Recently it has been discovered that in Weyl semimetals the surface state Berry curvature can diverge in certain regions of momentum. This occurs in a continuum description of tilted Weyl cones, which for a slab geometry results in the Berry curvature dipole associated to the surface Fermi arcs growing linearly with slab thickness. Here we investigate analytically incarnations of lattice Weyl semimetals and demonstrate this diverging surface Berry curvature by solving for their surface states and connect these to their continuum descriptions. We show how the shape of the Fermi arc and the Berry curvature hot-line is determined and confirm the 1/k2 divergence of the Berry curvature at the end of the Fermi arc as well as the finite-size effects for the Berry curvature and its dipole, using finite-slab calculations and surface Green's function methods. We further establish that apart from affecting the second-order, nonlinear Hall effect, the divergent Berry curvature has a strong impact on other transport phenomena as the Magnus-Hall effect and the nonlinear chiral anomaly.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 February 2023
  • Revised 8 June 2023
  • Accepted 14 June 2023

DOI:https://doi.org/10.1103/PhysRevResearch.5.033007

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Dennis Wawrzik1 and Jeroen van den Brink1,2

  • 1Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
  • 2Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01069 Dresden, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 3 — July - September 2023

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×