• Letter
  • Open Access

Strained bilayer graphene, emergent energy scales, and moiré gravity

Alireza Parhizkar and Victor Galitski
Phys. Rev. Research 4, L022027 – Published 2 May 2022

Abstract

Twisted bilayer graphene is a rich condensed matter system, which allows one to tune energy scales and electronic correlations. The low-energy physics of the resulting moiré structure can be mathematically described in terms of a diffeomorphism in a continuum formulation. We stress that twisting is just one example of moiré diffeomorphisms. Another particularly simple and experimentally relevant transformation is a homogeneous isomorphic strain of one of the layers, which gives rise to a nearly identical moiré pattern (rotated by 90 relative to the twisted structure) and potentially flat bands. We further observe that low-energy physics of the strained bilayer graphene takes the form of a theory of fermions tunneling between two curved space-times. Conformal transformation of the metrics results in emergent “moiré energy scales,” which can be tuned to be much lower than those in the native theory. This observation generalizes to an arbitrary space-time dimension with or without an underlying lattice or periodicity and suggests a family of toy models of “moiré gravity” with low emergent energy scales. Motivated by these analogies, we present an explicit toy construction of moiré gravity, where the effective cosmological constant can be made arbitrarily small. We speculate about possible relevance of this scenario to the fundamental vacuum catastrophe in cosmology.

  • Figure
  • Figure
  • Figure
  • Received 16 September 2021
  • Accepted 14 April 2022

DOI:https://doi.org/10.1103/PhysRevResearch.4.L022027

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsGravitation, Cosmology & AstrophysicsInterdisciplinary PhysicsGeneral Physics

Authors & Affiliations

Alireza Parhizkar and Victor Galitski

  • Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 4, Iss. 2 — May - July 2022

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×