• Letter
  • Open Access

Localized dissipative vortices in chiral nematic liquid crystal cells

M. G. Clerc, G. González-Cortés, and S. Echeverría-Alar
Phys. Rev. Research 4, L022021 – Published 26 April 2022
PDFHTMLExport Citation

Abstract

Solitary waves and solitons have played a fundamental role in understanding nonlinear phenomena and emergent particle-type behaviors in out-of-equilibrium systems. This type of dynamic phenomenon has not only been essential to comprehend the behavior of fundamental particles but also to establish the possibilities of novel technologies based on optical elements. Dissipative vortices are topological particle-type solutions in vectorial field out-of-equilibrium systems. These states can be extended or localized in space. The topological properties of these states determine the existence, stability properties, and dynamic evolution. Under homeotropic anchoring, chiral nematic liquid crystal cells are a natural habitat for localized vortices or spherulites. However, chiral bubble creation and destruction mechanisms and their respective bifurcation diagrams are unknown. We propose a minimal two-dimensional model based on experimental observations of a temperature-triggered first-order winding/unwinding transition of a cholesteric liquid crystal cell and symmetry arguments, and investigate this system experimentally. This model reveals the main ingredients for the emergence of chiral bubbles and their instabilities. Experimental observations have a quite fair agreement with the theoretical results. Our findings are a starting point to understand the existence, stability, and dynamical behaviors of dissipative particles with topological properties.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 22 October 2021
  • Accepted 8 April 2022

DOI:https://doi.org/10.1103/PhysRevResearch.4.L022021

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nonlinear Dynamics

Authors & Affiliations

M. G. Clerc, G. González-Cortés, and S. Echeverría-Alar

  • Departamento de Física and Millenium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 4, Iss. 2 — April - June 2022

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×