• Editors' Suggestion
  • Open Access

Reduced density matrix and entanglement of interacting quantum field theories with Hamiltonian truncation

Patrick Emonts and Ivan Kukuljan
Phys. Rev. Research 4, 033039 – Published 14 July 2022

Abstract

Entanglement is the fundamental difference between classical and quantum systems and has become one of the guiding principles in the exploration of high- and low-energy physics. The calculation of entanglement entropies in interacting quantum field theories, however, remains challenging. Here, we present the first method for the explicit computation of reduced density matrices of interacting quantum field theories using truncated Hamiltonian methods. The method is based on constructing an isomorphism between the Hilbert space of the full system and the tensor product of Hilbert spaces of subintervals. This naturally enables the computation of the von Neumann and arbitrary Rényi entanglement entropies as well as mutual information, logarithmic negativity, and other measures of entanglement. Our method is applicable to equilibrium states and nonequilibrium evolution in real time. It is model independent and can be applied to any Hamiltonian truncation method that uses a free basis expansion. We benchmark the method on the free Klein-Gordon theory finding excellent agreement with the analytic results. We further demonstrate its potential on the interacting sine-Gordon model, studying the scaling of von Neumann entropy in ground states and real-time dynamics following quenches of the model.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 17 March 2022
  • Accepted 17 June 2022

DOI:https://doi.org/10.1103/PhysRevResearch.4.033039

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & FieldsQuantum Information, Science & Technology

Authors & Affiliations

Patrick Emonts and Ivan Kukuljan

  • Max-Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 4, Iss. 3 — July - September 2022

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×