• Open Access

Supersolid edge and bulk phases of a dipolar quantum gas in a box

S. M. Roccuzzo, S. Stringari, and A. Recati
Phys. Rev. Research 4, 013086 – Published 3 February 2022

Abstract

We investigate the novel density distributions acquired by a dipolar Bose-Einstein condensed gas confined in a box potential, with special focus on the effects of supersolidity. Different from the case of harmonic trapping, the ground-state density reveals a strong depletion in the bulk region and an accumulation of atoms near the walls, well separated from the bulk, as a consequence of the competition between the attractive and the repulsive nature of the dipolar force. In a quasi-two-dimensional geometry characterized by cylindrical box trapping, we observe the emergence of a ringlike configuration near the boundary of the box, revealing peculiar supersolid and crystal effects in a useful range of parameters. In the case of square box trapping, the density oscillations along the edges, caused by the enhanced accumulation of atoms near the vertices, exhibit interesting analogies with the case of box-trapped quasi-one-dimensional configurations. For sufficiently large values of the atom number, the bulk region can also exhibit supersolidity, the resulting geometry reflecting the symmetry of the confining potential even for large systems.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 2 April 2021
  • Revised 29 June 2021
  • Accepted 3 November 2021

DOI:https://doi.org/10.1103/PhysRevResearch.4.013086

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

S. M. Roccuzzo, S. Stringari, and A. Recati*

  • INO-CNR BEC Center and Dipartimento di Fisica, Università degli Studi di Trento, 38123 Povo, Italy and Trento Institute for Fundamental Physics and Applications, INFN, 38123, Trento, Italy

  • *Corresponding author: alessio.recati@ino.it

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 4, Iss. 1 — February - April 2022

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×