• Open Access

Quantum algorithms for quantum dynamics: A performance study on the spin-boson model

Alexander Miessen, Pauline J. Ollitrault, and Ivano Tavernelli
Phys. Rev. Research 3, 043212 – Published 23 December 2021

Abstract

Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This approach typically relies on deep circuits and is therefore hampered by the substantial limitations of available noisy and near-term quantum hardware. On the other hand, variational quantum algorithms (VQAs) have become an indispensable alternative, enabling small-scale simulations on present-day hardware. However, despite the recent development of VQAs for quantum dynamics, a detailed assessment of their efficiency and scalability is yet to be presented. To fill this gap, we applied a VQA based on McLachlan's principle to simulate the dynamics of a spin-boson model subject to varying levels of realistic hardware noise as well as in different physical regimes, and discuss the algorithm's accuracy and scaling behavior as a function of system size. We observe a good performance of the variational approach used in combination with a general, physically motivated wave function ansatz, and compare it to the conventional first-order Trotter evolution. Finally, based on this, we make scaling predictions for the simulation of a classically intractable system. We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage for the solution of time-dependent problems.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 September 2021
  • Accepted 2 December 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.043212

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Alexander Miessen1,2, Pauline J. Ollitrault1, and Ivano Tavernelli1,*

  • 1IBM Quantum, IBM Research – Zürich, 8803 Rüschlikon, Switzerland
  • 2Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

  • *Corresponding author: ita@zurich.ibm.com

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 4 — December - December 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×