• Open Access

Weighted directed clustering: Interpretations and requirements for heterogeneous, inferred, and measured networks

Tanguy Fardet and Anna Levina
Phys. Rev. Research 3, 043124 – Published 17 November 2021

Abstract

Weights and directionality of the edges carry a large part of the information we can extract from a complex network. However, many network measures were formulated initially for undirected binary networks. The necessity to incorporate information about the weights led to the conception of multiple extensions, particularly for definitions of the local clustering coefficient discussed here. We uncover that not all of these extensions are fully weighted; some depend on the degree and thus change a lot when an infinitely-small-weight edge is exchanged for the absence of an edge, a feature that is not always desirable. We call these methods “hybrid” and argue that, in many situations, one should prefer fully weighted definitions. After listing the necessary requirements for a method to analyze many various weighted networks properly, we propose a fully weighted continuous clustering coefficient that satisfies all the previously proposed criteria while also being continuous with respect to vanishing weights. We demonstrate that the behavior and meaning of the Zhang-Horvath clustering and our proposed continuous definition provide complementary results and significantly outperform other definitions in multiple relevant conditions. We demonstrate, using synthetic and real-world networks, that when the network is inferred, noisy, or very heterogeneous, it is essential to use the fully weighted clustering definitions.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 8 June 2021
  • Accepted 18 October 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.043124

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Networks

Authors & Affiliations

Tanguy Fardet and Anna Levina

  • University of Tübingen, Tübingen 72076, Germany and Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 4 — November - December 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×