• Open Access

Optimal resource cost for error mitigation

Ryuji Takagi
Phys. Rev. Research 3, 033178 – Published 20 August 2021

Abstract

One of the central problems for near-term quantum devices is to understand their ultimate potential and limitations. We address this problem in terms of quantum error mitigation by introducing a framework taking into account the full expressibility of near-term devices, in which the optimal resource cost for the probabilistic error cancellation method can be formalized. We provide a general methodology for evaluating the optimal cost by connecting it to a resource-theoretic quantifier defined with respect to the noisy operations that devices can implement. We employ our methods to estimate the optimal cost in mitigating a general class of noise, where we obtain an achievable cost that has a generic advantage over previous evaluations, as well as a fundamental lower bound applicable to a broad class of noisy implementable operations. We improve our bounds for several noise models, where we give the exact optimal costs for the depolarizing and dephasing noise, precisely characterizing the overhead cost while offering an operational meaning to the resource measure in terms of error mitigation. Our result particularly implies that the heuristic approach presented by Temme et al. [K. Temme, S. Bravyi, and J. M. Gambetta, Phys. Rev. Lett. 119, 180509 (2017)] is optimal even in our extended framework, putting fundamental limitations on the advantage provided by the extra degrees of freedom inherent in near-term devices for this noise model.

  • Figure
  • Received 10 July 2020
  • Revised 8 August 2021
  • Accepted 10 August 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.033178

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyGeneral Physics

Authors & Affiliations

Ryuji Takagi*

  • Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore; Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; and QunaSys Inc., Aqua Hakusan Building 9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan

  • *ryuji.takagi@ntu.edu.sg

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 3 — August - October 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×