• Open Access

Diffusive coupling of two well-mixed compartments elucidates elementary principles of protein-based pattern formation

Fridtjof Brauns, Jacob Halatek, and Erwin Frey
Phys. Rev. Research 3, 013258 – Published 19 March 2021
PDFHTMLExport Citation

Abstract

Spatial organization of proteins in cells is important for many biological functions. In general, the nonlinear, spatially coupled models for protein-pattern formation are only accessible to numerical simulations, which has limited insight into the general underlying principles. To overcome this limitation, we adopt the setting of two diffusively coupled, well-mixed compartments that represents the elementary feature of any pattern—an interface. For intracellular systems, the total numbers of proteins are conserved on the relevant timescale of pattern formation. Thus the essential dynamics is the redistribution of the globally conserved mass densities between the two compartments. We present a phase-portrait analysis in the phase-space of the redistributed masses that provides insights on the physical mechanisms underlying pattern formation. We demonstrate this approach for several paradigmatic model systems. In particular, we show that the pole-to-pole Min oscillations in Escherichia coli are relaxation oscillations of the MinD polarity orientation. This reveals a close relation between cell polarity oscillatory patterns in cells. Critically, our findings suggest that the design principles of intracellular pattern formation are found in characteristic features in these phase portraits (nullclines and fixed points). These features are not uniquely determined by the topology of the protein-interaction network but depend on parameters (kinetic rates, diffusion constants) and distinct networks can give rise to equivalent phase portrait features.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 29 October 2020
  • Accepted 25 February 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.013258

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics of Living SystemsNonlinear Dynamics

Authors & Affiliations

Fridtjof Brauns1, Jacob Halatek2, and Erwin Frey1,*

  • 1Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
  • 2Biological Computation Group, Microsoft Research, Cambridge CB1 2FB, United Kingdom

  • *frey@lmu.de

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 1 — March - May 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×