• Open Access

X-symbols for non-Abelian symmetries in tensor networks

Andreas Weichselbaum
Phys. Rev. Research 2, 023385 – Published 23 June 2020

Abstract

The full exploitation of non-Abelian symmetries in tensor network states (TNSs) derived from a given lattice Hamiltonian is attractive in various aspects. From a theoretical perspective, it can offer deep insights into the entanglement structure and quantum information content of strongly correlated quantum many-body states. From a practical perspective, it allows one to push numerical efficiency by orders of magnitude. Physical expectation values based on TNSs require the full contraction of a given tensor network, with the elementary ingredient being a pairwise contraction. While well established for no or just Abelian symmetries, this can become quickly extremely involved and cumbersome for general non-Abelian symmetries. As shown in this paper, however, the elementary step of a pairwise contraction of tensors of arbitrary rank can be tackled in a transparent and efficient manner by introducing so-called X-symbols. These deal with the pairwise contraction of the generalized underlying Clebsch-Gordan tensors (CGTs). They can be computed deterministically once and for all, and hence they can also be tabulated. Akin to 6j-symbols, X-symbols are generally much smaller than their constituting CGTs. In applications, they solely affect the tensors of reduced matrix elements and therefore, once tabulated, allow one to completely sidestep the explicit usage of CGTs, and thus to greatly increase numerical efficiency.

  • Received 30 October 2019
  • Revised 22 January 2020
  • Accepted 15 May 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.023385

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Andreas Weichselbaum*

  • Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973-5000, USA and Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience, Ludwig-Maximilians-Universität, Theresienstrasse 37, 80333 Munich, Germany

  • *weichselbaum@bnl.gov

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 2 — June - August 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×