• Open Access

Unsupervised learning using topological data augmentation

Oleksandr Balabanov and Mats Granath
Phys. Rev. Research 2, 013354 – Published 20 March 2020

Abstract

Unsupervised machine learning is a cornerstone of artificial intelligence as it provides algorithms capable of learning tasks, such as classification of data, without explicit human assistance. We present an unsupervised deep learning protocol for finding topological indices of quantum systems. The core of the proposed scheme is a “topological data augmentation” procedure that uses seed objects to generate ensembles of topologically equivalent data. Such data, assigned with dummy labels, can then be used to train a neural network classifier for sorting arbitrary objects into topological equivalence classes. Importantly, we also show how to retrieve the local quantities corresponding to the learned topological indices from the intermediate outputs of the trained network. Our protocol is explicitly illustrated on two-band insulators in one and two dimensions, characterized by a winding number and a Chern number respectively. Using the augmentation technique also in the classification step, to classify a family of topologically equivalent objects instead of a single object, we can achieve accuracy arbitrarily close to 100% even for indices outside the training regime. Apart from the method's applicability to topological classification, it also provides a new perspective on data augmentation in supervised machine learning, where given sufficient mathematical structure the set of category-preserving deformations can be rigorously defined.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 26 November 2019
  • Accepted 19 February 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.013354

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Oleksandr Balabanov and Mats Granath

  • Department of Physics, University of Gothenburg, SE 412 96 Gothenburg, Sweden

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 1 — March - May 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×