• Open Access

Sideband cooling of molecules in optical traps

L. Caldwell and M. R. Tarbutt
Phys. Rev. Research 2, 013251 – Published 3 March 2020

Abstract

Sideband cooling is a popular method for cooling atoms to the ground state of an optical trap. Applying the same method to molecules requires a number of challenges to be overcome. Strong tensor Stark shifts in molecules cause the optical trapping potential, and corresponding trap frequency, to depend strongly on rotational, hyperfine, and Zeeman states. Consequently, transition frequencies depend on the motional quantum number and there are additional heating mechanisms, either of which can be fatal for an effective sideband cooling scheme. We develop the theory of sideband cooling in state-dependent potentials, and derive an expression for the heating due to photon scattering. We calculate the ac Stark shifts of molecular states in the presence of a magnetic field, and for any polarization. We show that the complexity of sideband cooling can be greatly reduced by applying a large magnetic field to eliminate electron- and nuclear-spin degrees of freedom from the problem. We consider how large the magnetic field needs to be, show that heating can be managed sufficiently well, and present a simple recipe for cooling to the ground state of motion.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 23 October 2019
  • Accepted 30 January 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.013251

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

L. Caldwell and M. R. Tarbutt*

  • Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom

  • *m.tarbutt@imperial.ac.uk

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 1 — March - May 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×