• Open Access

Contracting projected entangled pair states is average-case hard

Jonas Haferkamp, Dominik Hangleiter, Jens Eisert, and Marek Gluza
Phys. Rev. Research 2, 013010 – Published 3 January 2020

Abstract

An accurate calculation of the properties of quantum many-body systems is one of the most important yet intricate challenges of modern physics and computer science. In recent years, the tensor network ansatz has established itself as one of the most promising approaches enabling striking efficiency of simulating static properties of one-dimensional systems and abounding numerical applications in condensed matter theory. In higher dimensions, however, a connection to the field of computational complexity theory has shown that the accurate normalization of the two-dimensional tensor networks called projected entangled pair states (PEPS) is #P-complete. Therefore an efficient algorithm for PEPS contraction would allow solving exceedingly difficult combinatorial counting problems, which is considered highly unlikely. Due to the importance of understanding two- and three-dimensional systems the question currently remains: Are the known constructions typical of states relevant for quantum many-body systems? In this work, we show that an accurate evaluation of normalization or expectation values of PEPS is as hard to compute for typical instances as for special configurations of highest computational hardness. We discuss the structural property of average-case hardness in relation to the current research on efficient algorithms attempting tensor network contraction, hinting at a wealth of possible further insights into the average-case hardness of important problems in quantum many-body theory.

  • Received 31 October 2018
  • Revised 27 October 2019

DOI:https://doi.org/10.1103/PhysRevResearch.2.013010

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Jonas Haferkamp, Dominik Hangleiter, Jens Eisert, and Marek Gluza

  • Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 1 — January - March 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×