• Open Access

Exploring the structure of misconceptions in the Force and Motion Conceptual Evaluation with modified module analysis

James Wells, Rachel Henderson, Adrienne Traxler, Paul Miller, and John Stewart
Phys. Rev. Phys. Educ. Res. 16, 010121 – Published 22 April 2020
PDFHTMLExport Citation

Abstract

Investigating student learning and understanding of conceptual physics is a primary research area within physics education research. Multiple quantitative methods have been employed to analyze commonly used mechanics conceptual inventories: the Force Concept Inventory (FCI) and the Force and Motion Conceptual Evaluation (FMCE). Recently, researchers have applied network analytic techniques to explore the structure of the incorrect responses to the FCI identifying communities of incorrect responses which could be mapped on to common misconceptions. In this study, the method used to analyze the FCI, modified module analysis was applied to a large sample of FMCE pretest and post-test responses (Npre=3956, Npost=3719). The communities of incorrect responses identified were consistent with the item groups described in previous works. As in the work with the FCI, the network was simplified by only retaining nodes selected by a substantial number of students. Retaining as nodes only those incorrect answer choices selected by at least 20% of the students produced communities associated with only four misconceptions. The incorrect response communities identified for men and women were substantially different, as was the change in these communities from pretest to post-test. The 20% threshold was far more restrictive than the 4% threshold applied to the FCI in the prior work that generated similar structures. Retaining nodes selected by 5% or 10% of students generated a large number of complex communities. The communities identified at the 10% threshold were generally associated with common misconceptions producing a far richer set of incorrect communities than the FCI; this may indicate that the FMCE is a superior instrument for characterizing the breadth of student misconceptions about Newtonian mechanics.

  • Figure
  • Received 7 January 2020
  • Accepted 13 April 2020

DOI:https://doi.org/10.1103/PhysRevPhysEducRes.16.010121

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics Education Research

Authors & Affiliations

James Wells1, Rachel Henderson2, Adrienne Traxler3, Paul Miller4, and John Stewart4,*

  • 1College of the Sequoias, Science Division, Visalia, California 93277, USA
  • 2Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan 48824, USA
  • 3Wright State University, Department of Physics, Dayton, Ohio 45435, USA
  • 4West Virginia University, Department of Physics and Astronomy, Morgantown, West Virginia 26506, USA

  • *jcstewart1@mail.wvu.edu

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 16, Iss. 1 — January - June 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×