Atomic layer deposition of yttrium iron garnet thin films

M. Lammel, D. Scheffler, D. Pohl, P. Swekis, S. Reitzig, S. Piontek, H. Reichlova, R. Schlitz, K. Geishendorf, L. Siegl, B. Rellinghaus, L. M. Eng, K. Nielsch, S. T. B. Goennenwein, and A. Thomas
Phys. Rev. Materials 6, 044411 – Published 25 April 2022

Abstract

Magnetic nanostructures with nontrivial three-dimensional (3D) shapes enable complex magnetization configurations and a wide variety of new phenomena. To date predominantly magnetic metals have been considered for nontrivial 3D nanostructures, although the magnetic and electronic transport responses are intertwined in metals. Here we report the first successful fabrication of the magnetic insulator yttrium iron garnet (Y3Fe5O12, YIG) via atomic layer deposition (ALD) and show that conformal coating of 3D objects is possible. We utilize a supercycle approach based on the combination of subnanometer thin layers of the binary systems Fe2O3 and Y2O3 in the correct atomic ratio with a subsequent annealing step for the fabrication of ALD-YIG films on Y3Al5O12 substrates. Our process is robust against typical growth-related deviations, ensuring a good reproducibility. The ALD-YIG thin films exhibit a high crystalline quality as well as magnetic properties comparable to samples obtained by other deposition techniques. We show that the ALD-YIG thin films are conformal. This enables the fabrication of 3D YIG nanostructures once appropriate nonmagnetic, 3D templates are developed. Such 3D YIG structures build the groundwork for the experimental investigation of curvature-induced changes on pure spin currents and magnon transport effects.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 18 January 2022
  • Accepted 25 March 2022

DOI:https://doi.org/10.1103/PhysRevMaterials.6.044411

©2022 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

M. Lammel1,2,3,*, D. Scheffler4, D. Pohl5, P. Swekis4,6, S. Reitzig7, S. Piontek1, H. Reichlova4, R. Schlitz4, K. Geishendorf1,2, L. Siegl4,3, B. Rellinghaus5, L. M. Eng7,8, K. Nielsch1,2,8,9, S. T. B. Goennenwein4,3,8, and A. Thomas1,4,†

  • 1Institute for Metallic Materials, Leibniz Institute of Solid State and Materials Science, 01069 Dresden, Germany
  • 2Institute of Applied Physics, Technische Universität Dresden, 01069 Dresden, Germany
  • 3Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
  • 4Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01069 Dresden, Germany
  • 5Dresden Center for Nanoanalysis (DCN), cfaed, Technische Universiät Dresden, 01062 Dresden, Germany
  • 6Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
  • 7Institut für angewandte Physik, Technische Universität Dresden, 01187 Dresden, Germany
  • 8ct.qmat: Dresden-Würzburg Cluster of Excellence - EXC 2147, Technische Universität Dresden, 01062 Dresden, Germany
  • 9Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany

  • *michaela.lammel@uni-konstanz.de
  • a.thomas@ifw-dresden.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 6, Iss. 4 — April 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×