• Open Access

Full energy range primary radiation damage model

Qigui Yang and Pär Olsson
Phys. Rev. Materials 5, 073602 – Published 6 July 2021

Abstract

A full energy range primary radiation damage model is presented here. It is based on the athermal recombination corrected displacements per atom (arc-dpa) model but includes a proper treatment of the near threshold conditions for metallic materials. Both ab initio (AIMD) and classical molecular dynamics (MD) simulations are used here for various metals with body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp) structures to validate the model. For bcc and hcp metals, the simulation results fit very well with the model. For fcc metals, although there are slight deviations between the model and direct simulation results, it is still a clear improvement on the arc-dpa model. The deviations are due to qualitative differences in the threshold energy surfaces of fcc metals with respect to bcc and hcp metals according to our classical MD simulations. We introduce the minimum threshold displacement energy (TDE) as a term in our damage model. We calculated minimum TDEs for various metal materials using AIMD. In general, the calculated minimum TDEs are in very good agreement with experimental results. Moreover, we noticed a discrepancy in the literature for fcc Ni and estimated the average TDE of Ni using both classical MD and AIMD. It was found that the average TDE of Ni should be ∼70 eV based on simulation and experimental data, not the commonly used literature value of 40 eV. The most significant implications of introducing this full energy range damage model will be for estimating the effect of weak particle-matter interactions, such as for γ- and electron-radiation-induced damage.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 22 February 2021
  • Accepted 3 May 2021

DOI:https://doi.org/10.1103/PhysRevMaterials.5.073602

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalCondensed Matter, Materials & Applied Physics

Authors & Affiliations

Qigui Yang and Pär Olsson*

  • KTH Royal Institute of Technology, Nuclear Engineering, Roslagstullsbacken 21, 114 21 Stockholm, Sweden

  • *Corresponding author: polsson@kth.se

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 7 — July 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×