Composition analysis and transition energies of ultrathin Sn-rich GeSn quantum wells

Inga A. Fischer, Caterina J. Clausen, Daniel Schwarz, Peter Zaumseil, Giovanni Capellini, Michele Virgilio, Maria Cecilia da Silva Figueira, Stefan Birner, Sebastian Koelling, Paul M. Koenraad, Michael R. S. Huang, Christoph T. Koch, Torsten Wendav, Kurt Busch, and Jörg Schulze
Phys. Rev. Materials 4, 024601 – Published 19 February 2020
PDFHTMLExport Citation

Abstract

While GeSn alloys with high Sn content constitute direct group-IV semiconductors, their growth on Si remains challenging. The deposition of a few monolayers of pure Sn on Ge and their overgrowth with Ge using molecular beam epitaxy can be a means of obtaining Sn-rich quantum wells with very high Sn content while maintaining high crystal quality. Here, we provide structural and compositional information on such structures with very high accuracy. Based on our characterization results we theoretically predict transition energies and compare them with experimental results from photoluminescence measurements. Our results constitute the groundwork for tuning the molecular beam epitaxy based growth of Sn-rich quantum wells and dots for applications in electronic and optoelectronic devices.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 5 September 2019
  • Revised 19 December 2019
  • Accepted 23 January 2020

DOI:https://doi.org/10.1103/PhysRevMaterials.4.024601

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Inga A. Fischer1,*, Caterina J. Clausen2, Daniel Schwarz2, Peter Zaumseil3, Giovanni Capellini3,4, Michele Virgilio5, Maria Cecilia da Silva Figueira6, Stefan Birner6, Sebastian Koelling7, Paul M. Koenraad7, Michael R. S. Huang8, Christoph T. Koch8, Torsten Wendav9, Kurt Busch9,10, and Jörg Schulze2

  • 1Experimentalphysik und Funktionale Materialien, Brandenburgische Technische Universität Cottbus-Senftenberg, Erich-Weinert-Strasse 1, D-03046 Cottbus, Germany
  • 2Institut für Halbleitertechnik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
  • 3IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
  • 4Dipartimento di Scienze, Università di Roma Tre, Viale Guglielmo Marconi, 446, 00146 Roma, Italy
  • 5Dipartimento di Fisica “E. Fermi,” Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
  • 6nextnano GmbH, Lichtenbergstrasse 8, D-85748 Garching bei München, Germany
  • 7Photonics and Semiconductor Nanophysics, Department of Applied Physics, Eindhoven University of Technology, NL-5600 MB Eindhoven, The Netherlands
  • 8AG Strukturforschung/Elektronenmikroskopie, Humboldt-Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
  • 9AG Theoretische Optik & Photonik, Humboldt-Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
  • 10Max-Born-Institut, Max-Born-Strasse 2A, D-12489 Berlin, Germany

  • *Corresponding author: inga.fischer@b-tu.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 2 — February 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×