• Open Access

Potassium fluoride postdeposition treatment with etching step on both Cu-rich and Cu-poor CuInSe2 thin film solar cells

Finn Babbe, Hossam Elanzeery, Michele Melchiorre, Anastasiya Zelenina, and Susanne Siebentritt
Phys. Rev. Materials 2, 105405 – Published 24 October 2018
PDFHTMLExport Citation

Abstract

Recent progress in the power conversion efficiency of Cu(In,Ga)Se2 thin film solar cells has been achieved by an alkali postdeposition treatment. This treatment has been shown to change the surface composition and structure as well as the bulk properties. To investigate the relative importance of those two effects we study the impact of the treatment on Cu-rich and Cu-poor CuInSe2, which show a different influence of interface recombination without the treatment. We develop a potassium postdeposition treatment that can be applied to Cu-rich material, where an additional etching step is necessary. The same postdeposition treatment with etching step is applied to Cu-poor material. In both cases we observe an increase of the power conversion efficiency and open circuit voltage. Comparing the increase in open circuit voltage to the increase in quasi-Fermi level splitting indicates that the improvement in Cu-poor solar cells is mostly due to changes in the bulk, whereas in Cu-rich solar cells both the bulk and the interface are improved. The improvement of the interface is corroborated by temperature dependent current-voltage characteristics, which show that the dominating recombination path in Cu-rich solar cells moves from the interface to the bulk after treatment and by admittance spectroscopy, which shows that the treatment removes a 200 meV deep defect. Photoluminescence spectroscopy shows that even in Cu-rich material the alkali treatment creates a Cu-poor surface, which in this case cannot be created by diffusion of Cu into the bulk, but is grown during the treatment.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 21 February 2018
  • Revised 1 June 2018

DOI:https://doi.org/10.1103/PhysRevMaterials.2.105405

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Finn Babbe*, Hossam Elanzeery, Michele Melchiorre, Anastasiya Zelenina, and Susanne Siebentritt

  • Laboratory for Photovoltaics, Physics and Materials Science Research Unit, University of Luxembourg, Belvaux, L-4422, Luxembourg

  • *Author to whom correspondence should be addressed: Finn.Babbe@uni.lu

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 10 — October 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×