• Featured in Physics
  • Editors' Suggestion

Co/Ni multilayers for spintronics: High spin polarization and tunable magnetic anisotropy

S. Andrieu, T. Hauet, M. Gottwald, A. Rajanikanth, L. Calmels, A. M. Bataille, F. Montaigne, S. Mangin, E. Otero, P. Ohresser, P. Le Fèvre, F. Bertran, A. Resta, A. Vlad, A. Coati, and Y. Garreau
Phys. Rev. Materials 2, 064410 – Published 27 June 2018
Physics logo See Synopsis: Material Covers All the Bases for Spintronic Memories

Abstract

In this paper we analyze, in detail, the magnetic properties of (Co/Ni) multilayers, a widely used system for spintronics devices. We use spin-polarized photoemission spectroscopy, magneto-optical Kerr effect, x-ray magnetic circular dichroism (XMCD), and anomalous surface diffraction experiments to investigate the electronic, magnetic, and structural properties in [Co(x)/Ni(y)] single-crystalline stacks grown by molecular-beam epitaxy. The spin polarization depends sensitively on the surface termination and for Co terminated stacks is found to be much larger than bulk Co, reaching at least 90% for 2 Co atomic planes. We observe a magnetization transition from in plane to out of plane when varying the Ni coverage on a Co layer in the submonolayer range, confirming the interface origin of the perpendicular magnetic anisotropy in this system. Angle-dependent XMCD using strong applied magnetic field allows us to show that the orbital magnetic moment anisotropy in Co is responsible for the anisotropy and that our results are consistent with Bruno's model. Surface x-ray diffraction shows that fcc stacking is preferred for 1-monolayer Co-based superlattices, whereas the hcp stacking dominates for larger Co thicknesses. We finally explored the role of the stacking sequence on the Co and Ni magnetic moments by ab initio calculations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 7 February 2018
  • Revised 17 April 2018

DOI:https://doi.org/10.1103/PhysRevMaterials.2.064410

©2018 American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Condensed Matter, Materials & Applied Physics

Synopsis

Key Image

Material Covers All the Bases for Spintronic Memories

Published 27 June 2018

Multilayer structures of cobalt and nickel have ideal properties for next-generation spintronic memory devices.

See more in Physics

Authors & Affiliations

S. Andrieu1,*, T. Hauet1, M. Gottwald1,†, A. Rajanikanth1,‡, L. Calmels2, A. M. Bataille3, F. Montaigne1, S. Mangin1, E. Otero4, P. Ohresser4, P. Le Fèvre4, F. Bertran4, A. Resta4, A. Vlad4, A. Coati4, and Y. Garreau4,5

  • 1Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54000 Nancy
  • 2CEMES-CNRS, Université de Toulouse, BP 94347, F-31055 Toulouse Cedex 4, France
  • 3Laboratoire Léon Brillouin, IRAMIS, CEA Saclay, 91191 Gif sur Yvette, France
  • 4Synchrotron SOLEIL-CNRS, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
  • 5Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, 75013 Paris, France

  • *Corresponding author: stephane.andrieu@univ-lorraine.fr
  • Present address: IBM - T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.
  • Present address: University of Hyderabad, Hyderabad 500046, Telangana, India.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 2, Iss. 6 — June 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×