• Editors' Suggestion

Bias-Free Access to Orbital Angular Momentum in Two-Dimensional Quantum Materials

Jonas Erhardt, Cedric Schmitt, Philipp Eck, Matthias Schmitt, Philipp Keßler, Kyungchan Lee, Timur Kim, Cephise Cacho, Iulia Cojocariu, Daniel Baranowski, Vitaliy Feyer, Louis Veyrat, Giorgio Sangiovanni, Ralph Claessen, and Simon Moser
Phys. Rev. Lett. 132, 196401 – Published 6 May 2024

Abstract

The demonstration of a topological band inversion constitutes the most elementary proof of a quantum spin Hall insulator (QSHI). On a fundamental level, such an inverted band gap is intrinsically related to the bulk Berry curvature, a gauge-invariant fingerprint of the wave function’s quantum geometric properties in Hilbert space. Intimately tied to orbital angular momentum (OAM), the Berry curvature can be, in principle, extracted from circular dichroism in angle-resolved photoemission spectroscopy (CD-ARPES), were it not for interfering final state photoelectron emission channels that obscure the initial state OAM signature. Here, we outline a full-experimental strategy to avoid such interference artifacts and isolate the clean OAM from the CD-ARPES response. Bench-marking this strategy for the recently discovered atomic monolayer system indenene, we demonstrate its distinct QSHI character and establish CD-ARPES as a scalable bulk probe to experimentally classify the topology of two-dimensional quantum materials with time reversal symmetry.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 15 January 2024
  • Revised 6 March 2024
  • Accepted 8 April 2024

DOI:https://doi.org/10.1103/PhysRevLett.132.196401

© 2024 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Jonas Erhardt1,2, Cedric Schmitt1,2, Philipp Eck3,2, Matthias Schmitt1,4, Philipp Keßler1,2, Kyungchan Lee1,2, Timur Kim4, Cephise Cacho4, Iulia Cojocariu5,6,7, Daniel Baranowski6, Vitaliy Feyer6,8, Louis Veyrat1,2,9,10, Giorgio Sangiovanni3,2, Ralph Claessen1,2, and Simon Moser1,2,*

  • 1Physikalisches Institut, Universität Würzburg, D-97074 Würzburg, Germany
  • 2Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074 Würzburg, Germany
  • 3Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg, Germany
  • 4Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
  • 5Elettra-Sincrotrone, S.C.p.A, Trieste, 34149, Italy
  • 6Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Jülich, 52428, Germany
  • 7Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, 34127 Trieste, Italy
  • 8Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 47047 Duisburg, Germany
  • 9Leibniz Institute for Solid State and Materials Research, IFW Dresden, D-01069 Dresden, Germany
  • 10Laboratoire National des Champs Magnétiques Intenses, CNRS-INSA-UJF-UPS, UPR3228, 143 avenue de Rangueil, F-31400 Toulouse, France

  • *simon.moser@uni-wuerzburg.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 132, Iss. 19 — 10 May 2024

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×