Time-Dependent Variational Principle for Open Quantum Systems with Artificial Neural Networks

Moritz Reh, Markus Schmitt, and Martin Gärttner
Phys. Rev. Lett. 127, 230501 – Published 1 December 2021
PDFHTMLExport Citation

Abstract

We develop a variational approach to simulating the dynamics of open quantum many-body systems using deep autoregressive neural networks. The parameters of a compressed representation of a mixed quantum state are adapted dynamically according to the Lindblad master equation by employing a time-dependent variational principle. We illustrate our approach by solving the dissipative quantum Heisenberg model in one dimension for up to 40 spins and in two dimensions for a 4×4 system and by applying it to the simulation of confinement dynamics in the presence of dissipation.

  • Figure
  • Figure
  • Figure
  • Received 26 April 2021
  • Revised 16 July 2021
  • Accepted 5 November 2021

DOI:https://doi.org/10.1103/PhysRevLett.127.230501

© 2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Moritz Reh1,*, Markus Schmitt2, and Martin Gärttner1,3,4

  • 1Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
  • 2Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
  • 3Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
  • 4Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

  • *moritz.reh@kip.uni-heidelberg.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 127, Iss. 23 — 3 December 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×