Magnetization Process of Atacamite: A Case of Weakly Coupled S=1/2 Sawtooth Chains

L. Heinze, H. O. Jeschke, I. I. Mazin, A. Metavitsiadis, M. Reehuis, R. Feyerherm, J.-U. Hoffmann, M. Bartkowiak, O. Prokhnenko, A. U. B. Wolter, X. Ding, V. S. Zapf, C. Corvalán Moya, F. Weickert, M. Jaime, K. C. Rule, D. Menzel, R. Valentí, W. Brenig, and S. Süllow
Phys. Rev. Lett. 126, 207201 – Published 18 May 2021
PDFHTMLExport Citation

Abstract

We present a combined experimental and theoretical study of the mineral atacamite Cu2Cl(OH)3. Density-functional theory yields a Hamiltonian describing anisotropic sawtooth chains with weak 3D connections. Experimentally, we fully characterize the antiferromagnetically ordered state. Magnetic order shows a complex evolution with the magnetic field, while, starting at 31.5 T, we observe a plateaulike magnetization at about Msat/2. Based on complementary theoretical approaches, we show that the latter is unrelated to the known magnetization plateau of a sawtooth chain. Instead, we provide evidence that the magnetization process in atacamite is a field-driven canting of a 3D network of weakly coupled sawtooth chains that form giant moments.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 April 2019
  • Revised 25 March 2021
  • Accepted 30 March 2021

DOI:https://doi.org/10.1103/PhysRevLett.126.207201

© 2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

L. Heinze1,*, H. O. Jeschke2, I. I. Mazin3,4, A. Metavitsiadis5, M. Reehuis6, R. Feyerherm6, J.-U. Hoffmann6, M. Bartkowiak6, O. Prokhnenko6, A. U. B. Wolter7, X. Ding8, V. S. Zapf8, C. Corvalán Moya9,8, F. Weickert8,†, M. Jaime8,†, K. C. Rule10, D. Menzel1, R. Valentí11, W. Brenig5, and S. Süllow1

  • 1Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
  • 2Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
  • 3Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
  • 4Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, USA
  • 5Institut für Theoretische Physik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
  • 6Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, D-14109 Berlin, Germany
  • 7Institute for Solid State and Materials Research, Leibniz IFW Dresden, D-01069 Dresden, Germany
  • 8National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  • 9National Atomic Energy Commission (CNEA), Tres de Febrero University (UNTREF), National Scientific and Technical Research Council (CONICET), Argentina
  • 10Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
  • 11Institut für Theoretische Physik, Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany

  • *Corresponding author. l.heinze@tu-braunschweig.de
  • Present address: Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany.

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 126, Iss. 20 — 21 May 2021

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×