Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2

E. Koemets, I. Leonov, M. Bykov, E. Bykova, S. Chariton, G. Aprilis, T. Fedotenko, S. Clément, J. Rouquette, J. Haines, V. Cerantola, K. Glazyrin, C. McCammon, V. B. Prakapenka, M. Hanfland, H.-P. Liermann, V. Svitlyk, R. Torchio, A. D. Rosa, T. Irifune, A. V. Ponomareva, I. A. Abrikosov, N. Dubrovinskaia, and L. Dubrovinsky
Phys. Rev. Lett. 126, 106001 – Published 12 March 2021
PDFHTMLExport Citation

Abstract

Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe2O3 and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory+dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 October 2020
  • Revised 7 December 2020
  • Accepted 7 January 2021

DOI:https://doi.org/10.1103/PhysRevLett.126.106001

© 2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsInterdisciplinary Physics

Authors & Affiliations

E. Koemets1,2,*, I. Leonov3,4,5,†, M. Bykov1, E. Bykova1,6, S. Chariton1, G. Aprilis7,8, T. Fedotenko7, S. Clément9, J. Rouquette2, J. Haines2, V. Cerantola8, K. Glazyrin10, C. McCammon1, V. B. Prakapenka11, M. Hanfland8, H.-P. Liermann10, V. Svitlyk8, R. Torchio8, A. D. Rosa8, T. Irifune12, A. V. Ponomareva4, I. A. Abrikosov13, N. Dubrovinskaia7,13, and L. Dubrovinsky1

  • 1Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany
  • 2Institut Charles Gerhardt Montpellier (UMR CNRS 5253), Université de Montpellier, F-34095 Montpellier Cedex 5, France
  • 3Institute of Metal Physics, Sofia Kovalevskaya Street 18, 620219 Yekaterinburg GSP-170, Russia
  • 4Materials Modeling and Development Laboratory, NUST “MISIS”, 119049 Moscow, Russia
  • 5Ural Federal University, 620002 Yekaterinburg, Russia
  • 6Carnegie Institution of Washington, Earth and Planets Laboratory, 5241 Broad Branch Road NW, Washington, DC 20015, USA
  • 7Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, Universität Bayreuth, D-95440 Bayreuth, Germany
  • 8The European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
  • 9Laboratoire Charles Coulomb (L2C)—UMR CNRS 5221, Université de Montpellier, CC069, 34095 Montpellier, France
  • 10Photon Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
  • 11Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60437, USA
  • 12Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
  • 13Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

  • *Corresponding author. koemets.e@gmail.com
  • Corresponding author. ivan.v.leonov@yandex.ru

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 126, Iss. 10 — 12 March 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×